摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(6-bromohexyloxy)-3-pentadecylbenzene | 1425940-44-8

中文名称
——
中文别名
——
英文名称
1-(6-bromohexyloxy)-3-pentadecylbenzene
英文别名
1-(6-Bromohexyloxy)-3-pentadecylbenzene;1-(6-bromohexoxy)-3-pentadecylbenzene
1-(6-bromohexyloxy)-3-pentadecylbenzene化学式
CAS
1425940-44-8
化学式
C27H47BrO
mdl
——
分子量
467.574
InChiKey
FQXZCVXIZGAPJF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    9.65
  • 重原子数:
    29.0
  • 可旋转键数:
    21.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.78
  • 拓扑面积:
    9.23
  • 氢给体数:
    0.0
  • 氢受体数:
    1.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2,7-二溴芴1-(6-bromohexyloxy)-3-pentadecylbenzene 在 sodium hydride 作用下, 以 四氢呋喃 为溶剂, 反应 12.0h, 以64%的产率得到2,7-dibromo-9,9-bis(6-(3-pentadecylphenoxy)hexyl)-9H-fluorene
    参考文献:
    名称:
    Self-Assembly in Tailor-Made Polyfluorenes: Synergistic Effect of Porous Spherical Morphology and FRET for Visual Sensing of Bilirubin
    摘要:
    Two new fluorene-based homo- (PDP-PF) and copolymers (PDPPF-co-Ph) were synthesized with a bulky 3-pentadecylphenoxy (PDP) group appended hexyl chains at the 9, 9' position using Suzuki coupling polymerization. Investigation on the morphology of the polymers using microscopic techniques like TEM and AFM indicated formation of self-assembled nanostructures like vesicles by PDP-PF and porous spheres by PDPPF-co-Ph respectively. Dynamic as well as static light scattering studies (DLS, SLS) in THF also indicated the existence of self-assembled nanosized particles in solution with a shape factor (rho) of 0.76 and 0.96 for PDP-PF and PDPPF-co-Ph, respectively, confirming the existence of vesicles in the case of the former and spherical particles in the case of the latter polymer. The favorable photophysical properties of the polyfluorenes were taken advantage of for the selective sensing of unbound bilirubin (BR) in THF. A high energy transfer efficiency of 86% upon addition of bilirubin with color change from blue (polyfluorene emission) to green (FRET-induced bilirubin emission) was observed with PDPPF-co-Ph. Steady state fluorescence measurements gave a minimum donor-acceptor distance of 36 A(0) and time-resolved fluorescence decay measurements showed a reduction in average lifetime of PDPPF-co-Ph (from 450 to 240 ps) upon addition of bilirubin indicating efficient energy transfer. The open porous spherical assembly of PDPPF-co-Ph enabled better adsorption of the analyte, which along with the good spectral overlap resulted in greater efficiency for FRET-induced energy transfer. Sensing of unbound bilirubin was also attempted in THF/water solvent mixture in an effort to simulate the unbound (THF soluble) and bound (water-soluble) bilirubin equilibrium. Enhancement of bilirubin emission coupled with quenching of polyfluorene emission makes this approach adaptable for visual fluorimetric color change (blue to green) based sensor. Structural analogues such as biliverdin and porphyrin showed poor fluorescence quenching efficiency, thus highlighting the selectivity and sensitivity of the FRET-based sensing of bilirubin by the newly designed polyfluorene.
    DOI:
    10.1021/ma4000946
  • 作为产物:
    描述:
    1,6-二溴己烷3-十五烷基苯酚 在 potassium hydroxide 作用下, 以 乙醇丙酮 为溶剂, 反应 24.5h, 以78%的产率得到1-(6-bromohexyloxy)-3-pentadecylbenzene
    参考文献:
    名称:
    Self-Assembly in Tailor-Made Polyfluorenes: Synergistic Effect of Porous Spherical Morphology and FRET for Visual Sensing of Bilirubin
    摘要:
    Two new fluorene-based homo- (PDP-PF) and copolymers (PDPPF-co-Ph) were synthesized with a bulky 3-pentadecylphenoxy (PDP) group appended hexyl chains at the 9, 9' position using Suzuki coupling polymerization. Investigation on the morphology of the polymers using microscopic techniques like TEM and AFM indicated formation of self-assembled nanostructures like vesicles by PDP-PF and porous spheres by PDPPF-co-Ph respectively. Dynamic as well as static light scattering studies (DLS, SLS) in THF also indicated the existence of self-assembled nanosized particles in solution with a shape factor (rho) of 0.76 and 0.96 for PDP-PF and PDPPF-co-Ph, respectively, confirming the existence of vesicles in the case of the former and spherical particles in the case of the latter polymer. The favorable photophysical properties of the polyfluorenes were taken advantage of for the selective sensing of unbound bilirubin (BR) in THF. A high energy transfer efficiency of 86% upon addition of bilirubin with color change from blue (polyfluorene emission) to green (FRET-induced bilirubin emission) was observed with PDPPF-co-Ph. Steady state fluorescence measurements gave a minimum donor-acceptor distance of 36 A(0) and time-resolved fluorescence decay measurements showed a reduction in average lifetime of PDPPF-co-Ph (from 450 to 240 ps) upon addition of bilirubin indicating efficient energy transfer. The open porous spherical assembly of PDPPF-co-Ph enabled better adsorption of the analyte, which along with the good spectral overlap resulted in greater efficiency for FRET-induced energy transfer. Sensing of unbound bilirubin was also attempted in THF/water solvent mixture in an effort to simulate the unbound (THF soluble) and bound (water-soluble) bilirubin equilibrium. Enhancement of bilirubin emission coupled with quenching of polyfluorene emission makes this approach adaptable for visual fluorimetric color change (blue to green) based sensor. Structural analogues such as biliverdin and porphyrin showed poor fluorescence quenching efficiency, thus highlighting the selectivity and sensitivity of the FRET-based sensing of bilirubin by the newly designed polyfluorene.
    DOI:
    10.1021/ma4000946
点击查看最新优质反应信息

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫