Ruthenium-Catalyzed Enantioselective C–H Functionalization: A Practical Access to Optically Active Indoline Derivatives
作者:Zhong-Yuan Li、Hetti Handi Chaminda Lakmal、Xiaolin Qian、Zhenyu Zhu、Bruno Donnadieu、Sarah J. McClain、Xue Xu、Xin Cui
DOI:10.1021/jacs.9b07251
日期:2019.10.9
developed for the first time, allowing for highly enantiose-lective synthesis of indoline derivatives via catalytic C-H activation. Commercially available Ru(II) arene complexes and chiral α-methylamines were employed as highly enantioselective catalysts. Based on a sterically rigidified chiral transient directing group, mul-ti-substituted indolines were produced in up to 92% yield with 96% ee. Further transformation
Inter- and Intramolecular Cyclopropanations of Diazo Weinreb Amides Catalyzed by Ruthenium(II)-<i>Amm</i>
-Pheox
作者:Hamada S. A. Mandour、Soda Chanthamath、Kazutaka Shibatomi、Seiji Iwasa
DOI:10.1002/adsc.201601345
日期:2017.5.17
diazo Weinreb amides and trans-allylic diazo Weinreb amide derivatives have been achieved using chiral ruthenium(II)-Amm-Pheox catalyst to give the corresponding chiral cyclopropyl Weinreb amides in excellent yield (up to 99%) with excellent enantioselectivity (up to 99% ee). The chiral products could easily undergo useful synthetic transformations to give the corresponding aldehydes, alcohols and
Novel Inhibitors of Staphyloxanthin Virulence Factor in Comparison with Linezolid and Vancomycin versus Methicillin-Resistant, Linezolid-Resistant, and Vancomycin-Intermediate <i>Staphylococcus aureus</i> Infections in Vivo
Our previous work (Wang et al. J. Med. Chem. 2016, 59, 4831-4848) revealed that effective benzocycloalkane-derived staphyloxanthin inhibitors against methicillin-resistant Staphylococcus aureus (S. aureus) infections were accompanied by poor water solubility and high hERG inhibition and dosages (preadministration). In this study, 92 chroman and coumaran derivatives as novel inhibitors have been addressed for overcoming deficiencies above. Derivatives 69 and 105 displayed excellent pigment inhibitory activities and low hERG inhibition, along with improvement of solubility by salt type selection. The broad and significantly potent antibacterial spectra of 69 and 105 were displayed first with normal administration in the livers and hearts in mice against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate S. aureus), and NRS271 (linezolid-resistant S. aureus), compared with linezolid and vancomycin. In summary, both 69 and 105 have the potential to be developed as good antibacterial candidates targeting virulence factors.
Novel Staphyloxanthin Inhibitors with Improved Potency against Multidrug Resistant <i>Staphylococcus aureus</i>
Diapophytoene desaturase (CrtN) is a potential novel target for intervening in the biosynthesis of the virulence factor staphyloxanthin. In this study, 38 1,4-benzodioxan-derived CrtN inhibitors were designed and synthesized to overwhelm the defects of leading compound 4a. Derivative 47 displayed superior pigment inhibitory activity, better hERG inhibitory properties and water solubility, and significantly sensitized MRSA strains to immune clearance in vitro. Notably, 47 displayed excellent efficacy against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate MRSA, VISA), and NRS271 (linezolid-resistant MRSA, LRSA) comparable to that of linezolid and vancomycin in vivo.
Novel Terminal Bipheny-Based Diapophytoene Desaturases (CrtN) Inhibitors as Anti-MRSA/VISR/LRSA Agents with Reduced hERG Activity
CrtN has been identified as an attractive and druggable target for treating pigmented Staphylococcus aureus infections. More than 100 new compounds were synthesized, which target the overwhelming the defects of the CrtN inhibitor 1. Analogues 23a and 23b demonstrated a significant activity against pigmented S. aureus Newman and 13 MRSA strains (IC50 = 0.02-10.5 nM), along with lower hERG inhibition (IC50 > 30 mu M, similar to 10-fold decrease in comparison with 1). Furthermore, 23a and 23b were confirmed to reduce the staphylococcal load in the kidney and heart in a mouse model with normal treatment deeper than pretreatment ones, comparable even with vancomycin and linezolid. Remarkably, 23a could strongly block the pigment biosynthesis of these nine multidrug-resistant MRSA strains, including excellent activity against LRSA strains and VISA strains in vivo, and all of which demonstrated that 23a has a huge potential against intractable MRSA, VISA, and LRSA issues as a therapeutic drug.