过去几十年来,基于生物发光的工具的发展在化学生物学领域稳步增长,其用途包括从报告基因到测定开发和靶向成像。最近,利用腔肠素的荧光素酶(例如高斯荧光素酶、海肾荧光素酶)和工程纳米荧光素酶已被利用,因为它们相对于萤火虫荧光素/荧光素酶具有强烈的发光能力。这些系统的重要性日益凸显,需要对影响其光产生的组件进行研究。之前的研究报道称,一种海洋荧光素酶Gaussia可以被铜盐有效抑制。抑制机制尚未阐明,但推测是通过与酶结合而发生的。在这项研究中,我们首次报告了一组非同源海洋荧光素酶在铜 (II) 存在下也表现出光发射显着减少的情况。我们研究了这种抑制背后的作用机制,并证明观察到的铜抑制并非源于荧光素酶相互作用,而是咪唑并吡嗪酮荧光素的化学氧化产生惰性、脱水荧光素。
diF‐DCLs moved to the active site at pH 7.8, a change in the chirality with the 390‐Cys residue resulted. Model experiments using L‐cysteine‐containing CGLK‐peptide supported two diastereoisomers from each diF‐DCL. The significant difference in the luminescence from these two chromophores is attributed to a plausible mechanism including the dynamically variable stereogenic center emerging at the storage and
(an enzyme) in marine organisms and is unstable in aqueous solutions. The dehydrogenated form of CTZ (dehydrocoelenterazine, dCTZ) is stable and thought to be a storage form of CTZ and a recycling intermediate from the condensation reaction of coelenteramine and 4-hydroxyphenylpyruvic acid to CTZ. In this study, the enzymatic conversion of dCTZ to CTZ was successfully achieved usingNAD(P)H:FMN oxidoreductase
The reaction of 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine with p-hydroxyphenylpyruvic acid gave directly Watasenia preluciferin in a satisfactory yield without any reductive treatment.
Copper‐mediated oxidation of imidazopyrazinones inhibits marine luciferase activity
作者:Justin J. O'Sullivan、Vanessa J. Lee、Marie C. Heffern
DOI:10.1002/bio.4415
日期:2023.2
nano-luciferases have been utilized due to their intense luminescence relative to fireflyluciferin/luciferase. The emerging importance of these systems warrants investigations into the components that affect their light production. Previous work has reported that one marine luciferase, Gaussia, is potently inhibited by copper salt. The mechanism for inhibition was not elucidated but was hypothesized
过去几十年来,基于生物发光的工具的发展在化学生物学领域稳步增长,其用途包括从报告基因到测定开发和靶向成像。最近,利用腔肠素的荧光素酶(例如高斯荧光素酶、海肾荧光素酶)和工程纳米荧光素酶已被利用,因为它们相对于萤火虫荧光素/荧光素酶具有强烈的发光能力。这些系统的重要性日益凸显,需要对影响其光产生的组件进行研究。之前的研究报道称,一种海洋荧光素酶Gaussia可以被铜盐有效抑制。抑制机制尚未阐明,但推测是通过与酶结合而发生的。在这项研究中,我们首次报告了一组非同源海洋荧光素酶在铜 (II) 存在下也表现出光发射显着减少的情况。我们研究了这种抑制背后的作用机制,并证明观察到的铜抑制并非源于荧光素酶相互作用,而是咪唑并吡嗪酮荧光素的化学氧化产生惰性、脱水荧光素。