摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(2-Hexoxyethoxy)ethyl 2-methylprop-2-enoate | 183317-57-9

中文名称
——
中文别名
——
英文名称
2-(2-Hexoxyethoxy)ethyl 2-methylprop-2-enoate
英文别名
——
2-(2-Hexoxyethoxy)ethyl 2-methylprop-2-enoate化学式
CAS
183317-57-9
化学式
C14H26O4
mdl
——
分子量
258.358
InChiKey
NOVXKSQLLRDLHQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.1
  • 重原子数:
    18
  • 可旋转键数:
    13
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.79
  • 拓扑面积:
    44.8
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为产物:
    参考文献:
    名称:
    Unique Associative Properties of Copolymers of Sodium Acrylate and Oligo(ethylene oxide) Alkyl Ether Methacrylates in Water
    摘要:
    A series of random copolymers of sodium acrylate and oligo(ethylene oxide) alkyl ether methacrylates (C(n)E(m)MA) with different lengths of ethylene oxide (EO) and alkyl groups were prepared by free-radical copolymerization at varying copolymer compositions. The lengths of the EO units (the number of EO units) (M) and the numbers of carbon atoms in the alkyl groups (n) ranged from 0 to 8.7 and 1 to 6, respectively. The copolymers with n = 1 and m = 1-8.7 exhibited a marked increase in solution viscosity at polymer concentrations (C,) higher than their overlap concentrations (C*) when the CnE MA contents W in the copolymers were in a certain limited range. Namely, there was an optimum x value that yielded the highest viscosity as a consequence of the competition between inter- and intrapolymer associations; the maximum viscosities occurred around x approximate to 25, 15, 10, 7, and 3 mol % for m = 1, 2, 3, 4.2, and 8.7, respectively. The maximum viscosity decreased significantly as n was increased on going from 1 to 6, and for the copolymers with n = 6, no increase in the viscosity occurred, a trend opposite to what is expected to interpolymer hydrophobic associations. When C-p > C*, steady-shear viscosity depended on the nature of countercations; the viscosities were found to be higher in the order Li+ > Na+ >> NH4+, whereas reduced viscosity in dilute regime (C-p < C*) was independent of the species of the cations. Rheological properties were found to be typical of transient networks formed through very weak interpolymer associations. Thus, the large increase in solution viscosity was explained by simultaneous interactions of countercations with EO units via coordination and with the polyanion via counterion condensation.
    DOI:
    10.1021/ma051145z
点击查看最新优质反应信息

文献信息

  • Liquid crystal medium containing polymerisable compounds
    申请人:Merck Patent GmbH
    公开号:US10570335B2
    公开(公告)日:2020-02-25
    The present invention relates to a liquid crystal (LC) medium comprising polymerisable compounds, to a process for its preparation, to its use for optical, electro-optical and electronic purposes, in particular in LC displays, and to LC displays comprising it.
    本发明涉及一种由可聚合化合物组成的液晶(LC)介质,涉及其制备工艺,涉及其在光学、电子光学和电子学方面的用途,特别是在液晶显示器中的用途,还涉及由其组成的液晶显示器。
  • LIQUID CRYSTAL MEDIUM CONTAINING POLYMERISABLE COMPOUNDS
    申请人:Merck Patent GmbH
    公开号:US20180179446A1
    公开(公告)日:2018-06-28
    The present invention relates to a liquid crystal (LC) medium comprising polymerisable compounds, to a process for its preparation, to its use for optical, electro-optical and electronic purposes, in particular in LC displays, and to LC displays comprising it.
  • Unique Associative Properties of Copolymers of Sodium Acrylate and Oligo(ethylene oxide) Alkyl Ether Methacrylates in Water
    作者:Itsuro Tomatsu、Akihito Hashidzume、Shin-ichi Yusa、Yotaro Morishima
    DOI:10.1021/ma051145z
    日期:2005.9.1
    A series of random copolymers of sodium acrylate and oligo(ethylene oxide) alkyl ether methacrylates (C(n)E(m)MA) with different lengths of ethylene oxide (EO) and alkyl groups were prepared by free-radical copolymerization at varying copolymer compositions. The lengths of the EO units (the number of EO units) (M) and the numbers of carbon atoms in the alkyl groups (n) ranged from 0 to 8.7 and 1 to 6, respectively. The copolymers with n = 1 and m = 1-8.7 exhibited a marked increase in solution viscosity at polymer concentrations (C,) higher than their overlap concentrations (C*) when the CnE MA contents W in the copolymers were in a certain limited range. Namely, there was an optimum x value that yielded the highest viscosity as a consequence of the competition between inter- and intrapolymer associations; the maximum viscosities occurred around x approximate to 25, 15, 10, 7, and 3 mol % for m = 1, 2, 3, 4.2, and 8.7, respectively. The maximum viscosity decreased significantly as n was increased on going from 1 to 6, and for the copolymers with n = 6, no increase in the viscosity occurred, a trend opposite to what is expected to interpolymer hydrophobic associations. When C-p > C*, steady-shear viscosity depended on the nature of countercations; the viscosities were found to be higher in the order Li+ > Na+ >> NH4+, whereas reduced viscosity in dilute regime (C-p < C*) was independent of the species of the cations. Rheological properties were found to be typical of transient networks formed through very weak interpolymer associations. Thus, the large increase in solution viscosity was explained by simultaneous interactions of countercations with EO units via coordination and with the polyanion via counterion condensation.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物