Intramolecular Pd-Mediated Processes of Amino-Tethered Aryl Halides and Ketones: Insight into the Ketone α-Arylation and Carbonyl-Addition Dichotomy. A New Class of Four-Membered Azapalladacycles
摘要:
An exploration of the scope and limitations of Pd(0)-catalyzed intramolecular coupling reactions of amino-tethered aryl halides and ketones has been conducted. Two different and competitive reaction pathways starting from omega-(2-haloanilino) alkanones, enolate arylation and addition to the carbonyl group, have been observed, while (omega-(2-halobenzylamino) alkanones exclusively underwent the enolate arylation process. The dichotomy between ketone alpha-arylation and carbonyl-addition in the reactions of omega-(2-haloanilino) alkanones has been rationalized by the intermediacy of unprecedented four-membered azapalladacycles, from which X-ray data and chemical behavior are reported.
Intramolecular Pd-Mediated Processes of Amino-Tethered Aryl Halides and Ketones: Insight into the Ketone α-Arylation and Carbonyl-Addition Dichotomy. A New Class of Four-Membered Azapalladacycles
An exploration of the scope and limitations of Pd(0)-catalyzed intramolecular coupling reactions of amino-tethered aryl halides and ketones has been conducted. Two different and competitive reaction pathways starting from omega-(2-haloanilino) alkanones, enolate arylation and addition to the carbonyl group, have been observed, while (omega-(2-halobenzylamino) alkanones exclusively underwent the enolate arylation process. The dichotomy between ketone alpha-arylation and carbonyl-addition in the reactions of omega-(2-haloanilino) alkanones has been rationalized by the intermediacy of unprecedented four-membered azapalladacycles, from which X-ray data and chemical behavior are reported.
Rapid Microwave-Assisted Reductive Amination of Ketones with Anilines
Using microwave technology, a new protocol has been developed that improves the reaction rate and overall efficiency of the directreductive amination of ketones with anilines. When using sodium triacetoxyborohydride as the reducing agent, high product yields and increased reaction rates are achieved for a variety of electronically different anilines. Furthermore, we have found that this protocol can