ABSTRACTThe present study aimed to develop an optimized dendrimeric delivery system for amphotericin B (AmB). Fifth-generation (5.0G) poly(propylene imine) (PPI) dendrimers were synthesized, conjugated with mannose, and characterized by use of various analytical techniques, including Fourier transform infrared spectroscopy (FTIR),1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis, and atomic force microscopy (AFM). Mannose-conjugated 5.0G PPI (MPPI) dendrimers were loaded with AmB and evaluated for drug loading efficiency,in vitrodrug release profile, stability, hemolytic toxicity to human erythrocytes, cytotoxicity to and cell uptake by J774A.1 macrophage cells, antiparasitic activity against intracellularLeishmania donovaniamastigotes,in vivopharmacokinetic and biodistribution profiles, drug localization index, toxicity, and antileishmanial activity. AFM showed the nanometric size of the MPPI dendrimers, with a nearly globular architecture. The conjugate showed a good entrapment efficiency for AmB, along with pH-sensitive drug release. Highly significant reductions in toxicity toward human erythrocytes and macrophage cells, without compromising the antiparasitic activity of AmB, were observed. The dendrimeric formulation of AmB showed a significant enhancement of the parasiticidal activity of AmB toward intramacrophagicL. donovaniamastigotes. In thein vitrocell uptake studies, the formulation showed selectivity toward macrophages, with significant intracellular uptake. Further pharmacokinetic and organ distribution studies elucidated the controlled delivery behavior of the formulation. The drug localization index was found to increase significantly in macrophage-rich organs.In vivostudies showed a biocompatible behavior of MPPIA, with negligible toxicity even at higher doses, and promising antileishmanial activity. From the results, we concluded that surface-engineered dendrimers may serve as optimized delivery vehicles for AmB with enhanced activity and low or negligible toxicity.
摘要本研究旨在为两性霉素 B(AmB)开发一种优化的树枝状给药系统。研究人员合成了第五代(5.0G)聚丙烯亚胺(PPI)树枝状聚合物,并与甘露糖共轭,利用傅立叶变换红外光谱(FTIR)、1H 核磁共振(1H-NMR)光谱分析和原子力显微镜(AFM)等多种分析技术对其进行了表征。将甘露糖共轭的 5.0G PPI(MPPI)树枝状聚合物载入 AmB,并评估了药物载入效率、体外药物释放曲线、稳定性、对人红细胞的溶血性毒性、对 J774A.1 巨噬细胞的细胞毒性和细胞摄取量、抗寄生虫性和抗药性。巨噬细胞的细胞毒性、对细胞内利什曼原虫的抗寄生活性、体内药代动力学和生物分布曲线、药物定位指数、毒性和抗利什曼活性。原子力显微镜(AFM)显示,MPPI 树枝状聚合物的尺寸为纳米级,结构接近球状。该共轭物对 AmB 有很好的吸附效率,同时还具有对 pH 值敏感的药物释放特性。在不影响 AmB 的抗寄生虫活性的情况下,它对人类红细胞和巨噬细胞的毒性大大降低。AmB 的树枝状聚合物制剂显示,AmB 对巨噬细胞内唐氏原虫的杀寄生虫活性显著增强。在玻璃细胞摄取研究中,该制剂显示出对巨噬细胞的选择性,具有显著的细胞内摄取作用。进一步的药代动力学和器官分布研究阐明了该制剂的控制给药行为。活体研究表明,MPPIA 具有生物相容性,即使剂量较大,毒性也可忽略不计,而且具有良好的抗利什曼病活性。从这些结果中,我们得出结论,表面工程树枝状聚合物可作为 AmB 的优化递送载体,具有更高的活性和低毒性或可忽略不计的毒性。