[GRAPHICS]A new methodology for the synthesis of substituted alkynes is described. In the presence of copper(I) thiophene 2-carboxylate (CuTC) or copper (I) 3-methylsalicylate (CuMeSal), the palladium-catalyzed cross-coupling of thioalkyne derivatives with boronic acids affords functionalized alkynes in yields ranging from 39 to 91%. This coupling occurs efficiently under mild, nonbasic conditions with a wide variety of thioalkynes and boronic acids, providing a reaction complementary to the Sonogashira protocol.
Tubulin is the target of many anticancer drugs, including N-phenyl-N'-(2-chloroethyl)urea (CEU). Unlike most anti-beta-tubulin agents, CEUs are protein monoalkylating agents binding through their N'-(2-chloroethyl)urea moiety to an amino acid nearby the colchicine-binding site on beta-tubulin isoform-2. Following the previously synthesized and attractive N-(3-omega-hydroxyalkylphenyl)-N'-(2-chloroethyl)urea
[GRAPHICS]A new methodology for the synthesis of substituted alkynes is described. In the presence of copper(I) thiophene 2-carboxylate (CuTC) or copper (I) 3-methylsalicylate (CuMeSal), the palladium-catalyzed cross-coupling of thioalkyne derivatives with boronic acids affords functionalized alkynes in yields ranging from 39 to 91%. This coupling occurs efficiently under mild, nonbasic conditions with a wide variety of thioalkynes and boronic acids, providing a reaction complementary to the Sonogashira protocol.