Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer
作者:Ariane Roseblade、Alison Ung、Mary Bebawy
DOI:10.1038/aps.2016.170
日期:2017.10
Organosulfur compounds derived from Allium vegetables have long been recognized for various therapeutic effects, including anticancer activity. Allicin, one of the main biologically active components of garlic, shows promise as an anticancer agent; however, instability makes it unsuitable for clinical application. The aim of this study was to investigate the effect of stabilized allicin derivatives on human breast cancer cells in vitro. In this study, a total of 22 stabilized thiosulfinate derivatives were synthesized and screened for their in vitro antiproliferative activities against drug-sensitive (MCF-7) and multidrug-resistant (MCF-7/Dx) human adenocarcinoma breast cancer cells. Assays for cell death, apoptosis, cell cycle progression and mitochondrial bioenergetic function were performed. Seven compounds (4b, 7b, 8b, 13b, 14b, 15b and 18b) showed greater antiproliferative activity against MCF-7/Dx cells than allicin. These compounds were also selective towards multidrug-resistant (MDR) cells, a consequence attributed to collateral sensitivity. Among them, 13b exhibited the greatest anticancer activity in both MCF-7/Dx and MCF-7 cells, with IC50 values of 18.54±0.24 and 46.50±1.98 μmol/L, respectively. 13b altered cellular morphology and arrested the cell cycle at the G2/M phase. Additionally, 13b dose-dependently induced apoptosis, and inhibited cellular mitochondrial respiration in cells at rest and under stress. MDR presents a significant obstacle to the successful treatment of cancer clinically. These results demonstrate that thiosulfinate derivatives have potential as novel anticancer agents and may offer new therapeutic strategies for the treatment of chemoresistant cancers.
葱属蔬菜衍生出的有机硫化合物因其多种治疗效果而被长期认可,其中包括抗癌活性。大蒜的主要生物活性成分之一——蒜素,有望作为抗癌剂;然而,其不稳定性使其不适合临床应用。本研究旨在探究稳定化的蒜素衍生物对人类乳腺癌细胞的体外效应。本研究中,共合成了22种稳定化的硫氧化物衍生物,并对其针对药物敏感型(MCF-7)和多药耐药型(MCF-7/Dx)人类乳腺癌腺癌细胞的体外抗增殖活性进行了筛选。进行了细胞死亡、凋亡、细胞周期进程和线粒体生物能学功能的检测。七种化合物(4b、7b、8b、13b、14b、15b和18b)对MCF-7/Dx细胞的抗增殖活性高于蒜素。这些化合物对多药耐药(MDR)细胞也具有选择性,这一结果归因于附属敏感性。其中,13b在MCF-7/Dx和MCF-7细胞中显示出最大的抗癌活性,IC50值分别为18.54±0.24和46.50±1.98 μmol/L。13b改变了细胞形态,并将细胞周期阻滞在G2/M期。此外,13b剂量依赖性地诱导凋亡,并抑制静息和应激状态下细胞的线粒体呼吸。MDR在临床上成功治疗癌症方面构成了重大障碍。这些结果表明,硫氧化物衍生物具有作为新型抗癌剂的潜力,并为治疗化学耐药性癌症提供了新的治疗策略。