摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1,1-dideuterio-hexyl)-benzene | 69202-02-4

中文名称
——
中文别名
——
英文名称
(1,1-dideuterio-hexyl)-benzene
英文别名
(α,α-2H2)-Hexylbenzol
(1,1-dideuterio-hexyl)-benzene化学式
CAS
69202-02-4
化学式
C12H18
mdl
——
分子量
164.259
InChiKey
LTEQMZWBSYACLV-KNXIQCGSSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.81
  • 重原子数:
    12.0
  • 可旋转键数:
    5.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为反应物:
    描述:
    (1,1-dideuterio-hexyl)-benzene2,6-二甲基吡啶碳酸氢钠 作用下, 以 二氯甲烷乙腈 为溶剂, 反应 1.0h, 生成 (α-2H)-α-Hydroxyhexylbenzol
    参考文献:
    名称:
    连续流电化学实现实用且位点选择性的 C−H 氧化
    摘要:
    在此,我们报告了一种实用且经济高效的电化学方法,使用连续流反应器对苄基 C(sp 3 )−H 键进行高选择性单氧化。通过生产 115 克其中一种醇产品,电化学方法展示了出色的范围和可扩展性。
    DOI:
    10.1002/anie.202310138
  • 作为产物:
    描述:
    己基苯 在 palladium on activated charcoal 氢气重水 作用下, 反应 72.0h, 以73%的产率得到(1,1-dideuterio-hexyl)-benzene
    参考文献:
    名称:
    Pd/C-H2-Catalysed Deuterium Exchange Reaction of the Benzylic Site in D2O
    摘要:
    Pd/C 被发现能够在室温下催化氘氧化物(D2O)中氘与苯乙烯碳上的氢进行高效和化学选择性的交换,且只需催化量的氢。
    DOI:
    10.1055/s-2002-32605
点击查看最新优质反应信息

文献信息

  • Efficient and Convenient Heterogeneous Palladium-Catalyzed Regioselective Deuteration at the Benzylic Position
    作者:Takanori Kurita、Kazuyuki Hattori、Saori Seki、Takuto Mizumoto、Fumiyo Aoki、Yuki Yamada、Kanoko Ikawa、Tomohiro Maegawa、Yasunari Monguchi、Hironao Sajiki
    DOI:10.1002/chem.200701147
    日期:2008.1.7
    hydrogen-deuterium (H-D) exchange reaction on the benzylic site proceeded in D2O in the presence of a small amount of H2 gas. The use of the Pd/C-ethylenediamine complex [Pd/C(en)] as a catalyst instead of Pd/C led to the efficient deuterium incorporation into the benzylic site of O-benzyl protective groups without hydrogenolysis. These H-D exchange reactions provide a post synthetic and D(2)-gas-free deuterium-labeling
    Pd / C催化的苄基位点上高效且区域选择性的氢-(HD)交换反应是在D2O中,存在少量H2气体的条件下进行的。使用Pd / C-乙二胺络合物[Pd / C(en)]代替Pd / C作为催化剂可将有效地掺入O-苄基保护基的苄基部位,而无需进行氢解。这些HD交换反应使用D2O作为源并使用异质Pd / C或Pd / C(en)作为可重复使用的异质化合物,在多种苄基位上提供了一种合成后的无D(2)-gas标记方法催化剂在中性和中性条件下使用。
  • Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds
    作者:Chen-Yan Cai、Xiao-Li Lai、Yu Wang、Hui-Hui Hu、Jinshuai Song、Ye Yang、Cheng Wang、Hai-Chao Xu
    DOI:10.1038/s41929-022-00855-7
    日期:——
    The enantioselective functionalization of ubiquitous C(sp3)–H bonds is ideally suited for the construction of three-dimensional chiral structures. However, organic molecules often contain multiple C(sp3)–H bonds with a similar energy and steric environment, rendering the simultaneous control of site-, chemo- and stereoselectivity extremely challenging. Here we show the merger of molecular photoelectrochemistry with asymmetric catalysis for the highly site- and enantioselective cyanation of benzylic C(sp3)–H bonds. This example of photoelectrochemical asymmetric catalysis requires no chemical oxidant and exhibits an exceptional level of site selectivity and functional group tolerance, enabling not only the efficient conversion of feedstock chemicals but also the late-stage functionalization of complex bioactive molecules and natural products, including ones with multiple benzylic sites. Asymmetric synthetic photoelectrochemical transformations are underdeveloped. Now, the combination of a photocatalyst, a chiral copper catalyst and an electrode allows the enantioselective cyanation of benzylic C–H bonds without a chemical oxidant.
    对无处不在的C(sp3)-H键进行对映选择性官能化是构建三维手性结构的理想选择。然而,有机分子通常含有多个具有相似能量和立体环境的C(sp3)-H键,因此同时控制位点选择性、化学选择性和立体选择性极具挑战性。在这里,我们展示了分子光电化学与不对称催化的结合,从而实现了苄基 C(sp3)âH 键的高度位点选择性和对映体选择性化。这一光电化学不对称催化实例不需要化学氧化剂,而且具有极高的位点选择性和官能团耐受性,不仅能高效转化原料化学品,还能对复杂的生物活性分子和天然产物(包括具有多个苄基位点的分子和天然产物)进行后期官能化。 不对称合成光电化学转化技术尚不发达。现在,将光催化剂、手性催化剂和电极结合在一起,就可以在不使用化学氧化剂的情况下对苄基 CâH 键进行对映选择性化。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫