Total Synthesis of 10-Deoxymethynolide and Narbonolide
作者:Richeng Xuan、Hong-Se Oh、Younghoon Lee、Han-Young Kang
DOI:10.1021/jo702384d
日期:2008.2.1
flexible and convenient approach was developed for the synthesis of 10-deoxymethynolide (1) and narbonolide (2), which are aglycones of the methymycin and the pikromycin families of macrolide antibiotics. These lactones are produced by pikromycin polyketide synthase from Streptomyces venezuelae. Polyketide lactones, 10-deoxymethynolide and narbonolide, which contain 12- and 14-membered rings, respectively
Biochemical Investigation of Pikromycin Biosynthesis Employing Native Penta- and Hexaketide Chain Elongation Intermediates
作者:Courtney C. Aldrich、Brian J. Beck、Robert A. Fecik、David H. Sherman
DOI:10.1021/ja042592h
日期:2005.6.1
the pikromycin (Pik) polyketidesynthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketidechainelongation intermediates as N-acetyl
Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units
作者:Edward Kalkreuter、Jared M. CroweTipton、Andrew N. Lowell、David H. Sherman、Gavin J. Williams
DOI:10.1021/jacs.8b10521
日期:2019.2.6
There is significant interest in diversifying the structures of polyketides to create new analogues of these bioactive molecules. This has traditionally been done by focusing on engineering the acyltransferase (AT) domains of polyketidesynthases (PKSs) responsible for the incorporation of malonyl-CoA extender units. Non-natural extender units have been utilized by engineered PKSs previously; however
使聚酮化合物的结构多样化以创造这些生物活性分子的新类似物具有重要意义。这在传统上是通过专注于工程化聚酮合酶 (PKS) 的酰基转移酶 (AT) 域来完成的,该域负责掺入丙二酰辅酶 A 扩展单元。非天然扩展单元以前已被工程 PKS 使用;然而,迄今为止的大部分工作都是使用自然混杂和/或位于缺乏下游瓶颈的终端模块中的 AT 完成的。这些限制阻止了具有低原生混杂性的 AT 的工程化以及对工程化 AT 下游域的任何潜在守门效应的研究。为了解决 PKS 工程知识方面的这一差距,比较了几种非天然扩展单元和通过活性位点诱变对 pikromycin PKS 的最后两个模块的底物偏好。这导致了两个模块的甲基丙二酰辅酶 A 特异性的工程化和它们选择性的反转,以偏爱连续的非天然衍生物。对这些双模块反应的产物分布的分析揭示了由下游酮还原酶和酮合酶域的守门引起的意外代谢物。尽管存在这些新的瓶颈,AT 工程提供了第一
Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases
作者:Aaron A. Koch、Jennifer J. Schmidt、Andrew N. Lowell、Douglas A. Hansen、Katherine M. Coburn、Joseph A. Chemler、David H. Sherman
DOI:10.1002/ange.202004991
日期:2020.8.3
AbstractEngineering polyketidesynthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both
摘要工程化聚酮合酶 (PKS) 来产生新的代谢物需要了解底物处理过程中的催化失效点。越来越多的证据表明硫酯酶 (TE) 结构域是工程化 PKS 系统中的一个重要瓶颈。我们创建了一系列带有来自异源途径的交换 TE 结构域的混合 PKS 模块,并用天然和非天然聚酮化合物底物对它们进行挑战。野生型 PKS 模块与非天然底物配对的反应主要导致预期大环内酯的转化率较低。同样,带有非同源 TE 结构域的天然底物和混合 PKS 模块的产物形成也大大减少。相比之下,非天然底物被大多数含有底物兼容 TE 的混合模块转化,直接暗示该结构域作为主要的催化守门人,并强调其作为蛋白质工程目标的价值,以改善 PKS 途径中的模拟生产。
Total Synthesis of Narbonolide and Biotransformation to Pikromycin
作者:Lakshmanan Venkatraman、Christine E. Salomon、David H. Sherman、Robert A. Fecik
DOI:10.1021/jo062047u
日期:2006.12.1
improved total synthesis of narbonolide and its biotransformation to pikromycin is reported. This total synthesis utilized an intramolecular Nozaki−Hiyama−Kishi coupling that significantly improved macrocyclization yields (90−96%) and allowed for differentiation of the C3- and C5-oxidation states. A pikAI deletion mutant of Streptomyces venezuelae was used to biotransform synthetic narbonolide to pikromycin