摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(1,3-benzodioxol-5-yl)-2-(4-formylphenoxy)acetamide

中文名称
——
中文别名
——
英文名称
N-(1,3-benzodioxol-5-yl)-2-(4-formylphenoxy)acetamide
英文别名
——
N-(1,3-benzodioxol-5-yl)-2-(4-formylphenoxy)acetamide化学式
CAS
——
化学式
C16H13NO5
mdl
——
分子量
299.283
InChiKey
LBRZNLNXKZGSSE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    22
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.12
  • 拓扑面积:
    73.9
  • 氢给体数:
    1
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy
    摘要:
    Inhibition of cyclin dependent kinase 4 (Cdk4) prevents cancer cells from entering the early G(0)/G(1) phase of the cell division cycle whereas inhibiting tubulin polymerization blocks cancer cells' ability to undergo mitosis (M) late in the cell cycle. We had reported earlier that two non-planar and relatively non-toxic fascaplysin derivatives, an indole and a tryptoline, inhibit Cdk4 with IC50 values of 6.2 and 10 mu M, respectively. Serendipitously, we had also found that they inhibited tubulin polymerization. The molecules were efficacious in mouse tumor models. We have now identified Cink4T in a 59-compound quinazolinone library, designed on the basis of ligand-based virtual screening, as a compound that inhibits Cdk4 and tubulin. Its IC50 value for Cdk4 inhibition is 0.47 mu M and >50 mu M for inhibition of Cdk1, Cdk2, Cdk6, Cdk9. Cink4T inhibits tubulin polymerization with an IC50 of 0.6 mu M. Molecular modelling studies on Cink4T with Cdk4 and tubulin crystal structures lend support to these observations. Cancer cell cycle analyses confirm that Cink4T blocks cells at both G(0)/G(1) and M phases as it should if it were to inhibit both Cdk4 and tubulin polymerization. Our results show, for the very first time, that virtual screening can be used to design novel inhibitors that can potently block two crucial phases of the cell division cycle. (C) 2019 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2019.01.011
  • 作为产物:
    描述:
    参考文献:
    名称:
    Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy
    摘要:
    Inhibition of cyclin dependent kinase 4 (Cdk4) prevents cancer cells from entering the early G(0)/G(1) phase of the cell division cycle whereas inhibiting tubulin polymerization blocks cancer cells' ability to undergo mitosis (M) late in the cell cycle. We had reported earlier that two non-planar and relatively non-toxic fascaplysin derivatives, an indole and a tryptoline, inhibit Cdk4 with IC50 values of 6.2 and 10 mu M, respectively. Serendipitously, we had also found that they inhibited tubulin polymerization. The molecules were efficacious in mouse tumor models. We have now identified Cink4T in a 59-compound quinazolinone library, designed on the basis of ligand-based virtual screening, as a compound that inhibits Cdk4 and tubulin. Its IC50 value for Cdk4 inhibition is 0.47 mu M and >50 mu M for inhibition of Cdk1, Cdk2, Cdk6, Cdk9. Cink4T inhibits tubulin polymerization with an IC50 of 0.6 mu M. Molecular modelling studies on Cink4T with Cdk4 and tubulin crystal structures lend support to these observations. Cancer cell cycle analyses confirm that Cink4T blocks cells at both G(0)/G(1) and M phases as it should if it were to inhibit both Cdk4 and tubulin polymerization. Our results show, for the very first time, that virtual screening can be used to design novel inhibitors that can potently block two crucial phases of the cell division cycle. (C) 2019 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2019.01.011
点击查看最新优质反应信息

文献信息

  • Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy
    作者:Vinay Sonawane、Mohd Usman Mohd Siddique、Surender Singh Jadav、Barij Nayan Sinha、Venkatesan Jayaprakash、Bhabatosh Chaudhuri
    DOI:10.1016/j.ejmech.2019.01.011
    日期:2019.3
    Inhibition of cyclin dependent kinase 4 (Cdk4) prevents cancer cells from entering the early G(0)/G(1) phase of the cell division cycle whereas inhibiting tubulin polymerization blocks cancer cells' ability to undergo mitosis (M) late in the cell cycle. We had reported earlier that two non-planar and relatively non-toxic fascaplysin derivatives, an indole and a tryptoline, inhibit Cdk4 with IC50 values of 6.2 and 10 mu M, respectively. Serendipitously, we had also found that they inhibited tubulin polymerization. The molecules were efficacious in mouse tumor models. We have now identified Cink4T in a 59-compound quinazolinone library, designed on the basis of ligand-based virtual screening, as a compound that inhibits Cdk4 and tubulin. Its IC50 value for Cdk4 inhibition is 0.47 mu M and >50 mu M for inhibition of Cdk1, Cdk2, Cdk6, Cdk9. Cink4T inhibits tubulin polymerization with an IC50 of 0.6 mu M. Molecular modelling studies on Cink4T with Cdk4 and tubulin crystal structures lend support to these observations. Cancer cell cycle analyses confirm that Cink4T blocks cells at both G(0)/G(1) and M phases as it should if it were to inhibit both Cdk4 and tubulin polymerization. Our results show, for the very first time, that virtual screening can be used to design novel inhibitors that can potently block two crucial phases of the cell division cycle. (C) 2019 Elsevier Masson SAS. All rights reserved.
查看更多

同类化合物

(5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) 黄樟素氧化物 黄樟素乙二醇; 2',3'-二氢-2',3'-二羟基黄樟素 黄樟素 风藤酰胺 非哌西特盐酸盐 非哌西特 盐酸盐 角秋水仙碱 螺[1,3-苯并二氧戊环-2,1'-环己烷]-5-胺 蓝细菌 苯并[d][1,3]二氧杂环戊烯-5-胺盐酸盐 苯并[d][1,3]二氧代l-5-甲基(2-氧代乙基)氨基甲酸叔丁酯 苯并[d][1,3]二氧代l-5-氨基甲酸叔丁酯 苯并[d][1,3]二氧代-4-甲腈 苯并[d][1,3]二氧代-4-氨基甲酸叔丁酯 苯并[d[1,3]二氧代-4-羧酰胺 苯并[1,3]二氧杂环戊烯-5-基甲基2-氯乙酸酯 苯并[1,3]二氧杂环戊烯-5-基甲基-苄基-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-[2-(4-氟-苯基)-乙基]-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-(四氢-呋喃-2-基甲基)-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-(2-氟-苄基)-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-(1-甲基-哌啶-4-基)-胺 苯并[1,3]二氧代l-5-甲基-吡啶-3-甲基-胺 苯并[1,3]二氧代l-5-甲基-(4-氟-苄基)-胺 苯并[1,3]二氧代l-5-乙酸甲酯 苯并[1,3]二氧代-5-羧酰胺盐酸盐 苯并[1,3]二氧代-5-甲基肼盐酸盐 苯并[1,3]二氧代-5-甲基吡啶-4-甲胺 苯并[1,3]二氧代-5-甲基-吡啶-2-甲胺 苯并[1,3]二氧代-5-乙酰氯 苯并-1,3-二氧杂环戊烯-5-甲醇丙酸酯 苯乙酸,1-(1,3-苯并二氧杂环戊烯-5-基)-3-丁烯-1-基酯 苯乙酮O-((4-(3,4-亚甲二氧基苄基)-1-哌嗪-1-基)羰基甲基)肟 苯,1-甲氧基-6-硝基-3,4-亚甲二氧基- 芝麻酚 胡椒醛肟 胡椒醛,二苄基缩硫醛 胡椒醛 胡椒醇 胡椒酸酰氯 胡椒酸 胡椒腈 胡椒环乙酮肟 胡椒环 胡椒基重氮酮 胡椒基甲醛 胡椒基氯 胡椒基戊二烯酸钾 胡椒基丙醛 胡椒基丙酮