作者:David E. Zembower、Chih Min Kam、James C. Powers、Leon H. Zalkow
DOI:10.1021/jm00087a014
日期:1992.5
A large series of variously substituted anthraquinones has been synthesized and assayed for inhibitory capacity against human leukocyte elastase (HLE) and cathepsin G (CatG), two serine proteinases implicated in diseases characterized by the abnormal degradation of connective tissue, such as pulmonary emphysema and rheumatoid arthritis. It was found that 2-alkyl-1,8-dihydroxyanthraquinone analogues are competitive inhibitors of HLE with IC50 values ranging from 4 to 10-mu-M, and also inhibit CatG with IC50 values ranging from 25 to 55-mu-M. Consequently, analogues containing the 2-alkyl-1-hydroxy-8-methoxyanthraquinone substitution pattern inhibit HLE to the same magnitude as for the compounds above, but show very little inhibition of CatG. Anthraquinones containing long, hydrophobic n-butyl carbonate moieties in the 1- and 8-positions in conjunction with a third hydrophobic substituent in the 2- or 3-position are highly selective for HLE, with K(i) values in the range of 10(-7) M. All of the inhibitors described are completely reversible, with no evidence of acyl-enzyme formation detected.