Electron‐Poor Acridones and Acridiniums as Super Photooxidants in Molecular Photoelectrochemistry by Unusual Mechanisms
摘要:
摘要据报道,缺电子的吖啶酮和原位生成的吖啶鎓盐是强效的闭壳光氧化剂,其作用机制令人惊讶。当用羰基(吖啶酮)桥接无环三芳基胺催化剂时,它们的行为完全从开壳、自由基阳离子、"超越扩散 "的光催化转变为闭壳、中性、扩散控制的光催化。吖啶酮的布氏酸活化可显著提高激发态氧化能力(+0.8 V)。质子化吖啶酮还原后,会转化为缺电子的吖啶鎓盐,成为更强的光氧化剂(*E1/2=+2.56-3.05 V vs SCE)。它们甚至能氧化缺电子的烯烃,而传统的吖啶鎓盐光氧化剂迄今为止仅限于氧化富电子的烯烃。令人惊讶的是,在光激发时,这些缺电子的吖啶鎓盐似乎会经历两个电子的还原淬火,形成吖啶阴离子,并通过光谱检测到其质子化形式。这种新行为在一定程度上得益于催化剂与炔的预组装,并与吖啶鎓盐的传统 SET 还原淬火形成鲜明对比。重要的是,这项研究说明了最初被认为是光催化剂的氧化还原活性发色分子是如何在反应过程中转变为具有完全不同的氧化还原和光谱特性的催化活性物种的。
An unprecedentedly straightforward electro-oxidative coupling of sulfides with activated methylene compounds to synthesize sulfur ylides has been developed. Good to excellent yields can be obtained under catalyst- and oxidant-free conditions at room temperature. Owing to the use of continuous-flow electrochemical setups, this green, mild and practical electrosynthesis features high efficiency and excellent
Nickel-Catalyzed <i>N</i>-Arylation of Diarylamines for Triarylamine Synthesis
作者:Kunjun Hu、Yunlong Gao、Jian Jin
DOI:10.1021/acs.organomet.2c00025
日期:2022.3.14
A practical nickel-catalyzed C–N cross-coupling reaction between diarylamines and aryl halides has been developed using commercially available NiCl2(dppf) as the catalyst. This robust method can be efficiently applied to a variety of diarylamines which are privileged motifs in materials science, including phenoxazines, phenothiazines, carbazoles, diphenylamines, 9-10-dihydroacridines, 10,11-dihydro-5H-dibenzo[b
已经使用市售的 NiCl 2 (dppf) 作为催化剂,开发了一种实用的镍催化二芳基胺和芳基卤化物之间的 C-N 交叉偶联反应。这种稳健的方法可以有效地应用于各种二芳基胺,它们是材料科学中的特权基序,包括吩恶嗪、吩噻嗪、咔唑、二苯胺、9-10-二氢吖啶、10,11-二氢-5 H-二苯并[ b , f ]氮杂类、5 H-二苯并[ b , f ]氮杂类和 9 H-三苯并[ b , d , f ]氮杂类。
THERMOELECTRIC CONVERSION MATERIAL, AND THERMOELECTRIC CONVERSION ELEMENT PREPARED THEREWITH
申请人:Toyo Ink SC Holdings Co., Ltd.
公开号:EP3902021A1
公开(公告)日:2021-10-27
A thermoelectric conversion material containing an electrically conductive material (A) and an organic compound (B) that are in a relationship satisfying the following formula (1): 0 eV ≤ | (HOMO of the organic compound (B)) - (HOMO of the electrically conductive material (A)) | ≤ 1.64 eV.