Organic nitriles are converted into cyanide ions through the action of cytochrome P450 enzymes in the liver. Cyanide is rapidly absorbed and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine. (L96)
Organic nitriles decompose into cyanide ions both in vivo and in vitro. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. (L97)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
致癌物分类
对人类不具有致癌性(未被国际癌症研究机构IARC列名)。
No indication of carcinogenicity to humans (not listed by IARC).
Exposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma, seizures, apnea, cardiac arrest and death. Chronic inhalation of cyanide causes breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Skin contact with cyanide salts can irritate and produce sores. (L96, L97)
Cyanide poisoning is identified by rapid, deep breathing and shortness of breath, general weakness, giddiness, headaches, vertigo, confusion, convulsions/seizures and eventually loss of consciousness. (L96, L97)
[EN] THERAPEUTIC ACRYLATES AS ENHANCED MEDICAL ADHESIVES<br/>[FR] ACRYLATES THÉRAPEUTIQUES UTILES EN TANT QU'ADHÉSIFS MÉDICAUX AMÉLIORÉS
申请人:UNIV CARNEGIE MELLON
公开号:WO2018052936A1
公开(公告)日:2018-03-22
Provided herein are therapeutic acrylate compounds useful as medical adhesives, comprising a therapeutic agent covalently linked to a methacrylate or cyanoacrylate moiety. Adhesive compositions and kits, such as liquid sutures and bone cement also are provided along with uses for the compositions.
A method of producing a compound represented by formula (1), including: allowing 1,4-benzoquinone or 1,2-benzoquinone to react with a dithiocarbamate compound represented by formula (2) in a polar solvent:
wherein R
1
and R
2
each independently represent a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, R
1
and R
2
may be the same or different and may be combined with each other to form a ring, X represents an ion necessary to neutralize the charge of the molecule, m represents an integer of 1 to 2, n represents an integer of 1 to 2, M represents a hydrogen atom, a metal atom or a conjugate acid of a base, p represents an integer of 1 to 4, and q represents an integer of 1 to 4.
SINGLE VIAL FORMULATION FOR MEDICAL GRADE CYANOACRYLATE
申请人:Kerber Charles W.
公开号:US20090257976A1
公开(公告)日:2009-10-15
Alkyl cyanoacrylate compositions and methods for making those compositions, utilizing high purity monomeric starting materials, formed into more viscous oligomers, and combined with a plasticizer and inhibitor to provide a single-container, storage stable medical cyanoacrylate.
The high temperatures required for cracking the cyanoacrylate oligomers, produced by the Knovenagel condensation of formaldehyde and a cyanoacetate, limit the synthetic diversity and the number of different side chains that can be incorporated into a cyanoacrylate prepared using this method. Accordingly, the diversity of cyanoacrylate monomers prepared industrially is quite limited. Disclosed herein is a method for the preparation of alpha-Cyanoacrylate ester monomers from a variety of phosphonium and ammonium alpha-cyanoacrylate salts. The phosphonium and ammonium alpha-cyanoacrylate salts are of the general formula: