摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-phenyloxirane-2-d | 52881-58-0

中文名称
——
中文别名
——
英文名称
2-phenyloxirane-2-d
英文别名
2-deuterio-2-phenyloxirane;1-D-phenyl oxirane;α-Deuterostyroloxid
2-phenyloxirane-2-d化学式
CAS
52881-58-0
化学式
C8H8O
mdl
——
分子量
121.143
InChiKey
AWMVMTVKBNGEAK-BNEYPBHNSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.76
  • 重原子数:
    9.0
  • 可旋转键数:
    1.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    12.53
  • 氢给体数:
    0.0
  • 氢受体数:
    1.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Bonini, Bianca F.; Maccagnani, Gaetano; Mazzanti, Germana, Gazzetta Chimica Italiana, 1990, vol. 120, # 2, p. 115 - 121
    摘要:
    DOI:
  • 作为产物:
    描述:
    2-溴苯乙酮硼氘化钠potassium tert-butylate 作用下, 以 甲醇 为溶剂, 反应 23.0h, 以91%的产率得到2-phenyloxirane-2-d
    参考文献:
    名称:
    常压CO 2和含电荷硫脲催化剂的合成环状有机碳酸酯
    摘要:
    从合成,环境和绿色化学的观点来看,环氧化物与CO 2的环加成以合成环状五元环有机碳酸酯是广泛关注的,并且开发用于这些转化的有效催化剂是持续的挑战。报道了一系列八种含电荷的硫脲盐,它们在温和的条件下(即60°C和大气压CO 2压力)催化这些反应。还进行了底物范围和机理研究,测量了同位素效应,并分离了反应性中间体,揭示了令人惊讶的途径,其中硫脲催化剂充当环氧化物裂解中的亲核试剂。
    DOI:
    10.1021/acs.joc.8b01374
点击查看最新优质反应信息

文献信息

  • Mechanistic Investigation of the Oxidation of Aromatic Alkenes by Monooxoruthenium(IV). Asymmetric Alkene Epoxidation by Chiral Monooxoruthenium(IV) Complexes
    作者:Wai-Hong Fung、Wing-Yiu Yu、Chi-Ming Che
    DOI:10.1021/jo980755c
    日期:1998.10.1
    'The oxoruthenium(IV) complexes [Ru-IV(terpy)(6,6'-Cl-2-bpy)O](ClO4)(2) (1a; terpy = 2,2':6',2 "-terpyridine; 6,6'-Cl-2-bpy = 6,6'-dichloro-2,2'-bipyridine), [Ru-IV(terpy)(tmeda)O](ClO4)(2) (1b; tmeda = N,N,N',N'-tetramethylethylenediamine), [Ru-IV(Cn)(bpy)O](ClO4)(2) (1c; Cn = 1,4,7-trimethyl-1,4,7-triazacyclononane), and [Ru-IV(PPz*)(bpy)O](ClO4)(2) (1d; PPz* = 2,6-bis[(4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methanoindazol-2-yl]pyridine) are effective for the epoxidation of aromatic alkenes in acetonitrile at ambient conditions. Their reactions with cis-alkenes such as cis-beta-methylstyrene and cis-beta-deuteriostyrene afford epoxides nonstereospecifically. The observation of the inverse secondary kinetic isotope effect for the beta-d(2)-styrene oxidations [k(H)/k(D) = 0.87 (1b), 0.86 (1d)], but not for alpha-deuteriostyrene (k(H)/k(D) = 0.98 for 1b and 1d), indicates that C-O bond formation is more advanced at the beta-carbon atom than at the alpha carbon, i.e., a stepwise mechanism. The second-order rate constants (k(2)) for the styrene oxidations are weakly dependent on the E degrees(Ru-IV/III) values of the oxoruthenium(IV) complexes, and both electron-withdrawing and -donating para substituents mildly accelerate the oxidation reaction of styrene. These findings discount strongly the intermediaries of an alkene-derived cation radical and a carbocation. A linear free-energy relationship between the second-order rate constants for the para-substituted styrene oxidations and the total substituent effect (TE) parameters has been established: rho(TE .) = +0.43 (R = 0.99) for 1b, +0.50 (R = 0.98) for 1c, and +0.37 (R = 0.99) for 1d (Wu, Y.-D.; Wong, C.-L.; Chan, K. W.; Ji, G.-Z.; Jiang, X.-K. J. Org. Chem. 1996, 61, 746). This suggests that the oxidation of aromatic alkenes by oxoruthenium(IV) complexes should proceed via the rate-limiting formation of a benzylic radical intermediate. Oxidation of styrene and cis- and trans-beta-methylstyrenes by the chiral oxoruthenium-(IV) complex Id attains moderate enantioselectivities, in which the production of cis-epoxide is more enantioselective than the trans counterpart. The ligand dissymmetry of PPz* together with the bipyridine ligand create a "chiral pocket" around the Ru-IV=O moiety, leading to enantiofacial discrimination through nonbonding interaction. Because the acyclic benzylic radical intermediate would undergo cis-trans isomerization before the second C-O bond formation, the overall product enantioselectivity (% ee(obs)) cannot be determined exclusively by facial selectivity (ee(facial)) of the first irreversible C-O bond formation step. The extent of the isomerization, measured by the cis-trans-epoxide selectivity or diastereoselectivity of epoxide ring closure, is an important element in controlling the enantiomeric excess of the epoxides.
    四氧化钌(IV)配合物 [Ru-IV(terpy)(6,6'-Cl-2-bpy)O](ClO4)(2)(1a;terpy = 2,2':6',2"-三联吡啶;6,6'-Cl-2-bpy = 6,6'-二-2,2'-联吡啶)、[Ru-IV(terpy)(tmeda)O]( )(2)(1b;tmeda = N,N,N',N'-四甲基乙二胺)、[Ru-IV(Cn)(bpy)O]( )(2)(1c;Cn = 1,4,7-三甲基-1,4,7-三氮杂环壬烷)和 [Ru-IV(PPz*)(bpy)O]( )(2)(1d;PPz* = 2,6-二[(4S,7R)-7,8,8-三甲基-4,5,6,7-四氢-4,7-甲基吲哚唑-2-基]吡啶)在乙腈中于室温条件下有效实现芳香烯的环氧化。它们与顺式烯烃(如顺式-β-甲基苯乙烯和顺式-β-去苯乙烯)反应,非立体选择性地生成环氧化物。观察到β-双苯乙烯氧化中的逆二级动力学同位素效应(k(H)/k(D) = 0.87(1b)、0.86(1d)),但未在α-对位去苯乙烯中观察到(k(H)/k(D) = 0.98,1b和1d),表明C-O键在β-碳的形成比α-碳更进一步,即逐步机制。苯乙烯氧化的二阶速率常数(k(2))对四氧化钌(IV)配合物的E°(Ru-IV/III)值弱依赖,且电子吸热性和 donating 气对位取代基均轻度加速苯乙烯的氧化反应。这些发现强烈排除了来源于烯烃的阳离子自由基和碳阳离子的中间体。已建立一个线性自由能关系,涉及对位取代苯乙烯氧化的二阶速率常数与总取代基效应(TE)参数:ρ(TE .) = +0.43(R = 0.99)用于1b,+0.50(R = 0.98)用于1c,+0.37(R = 0.99)用于1d(Wu, Y.-D.; Wong, C.-L.; Chan, K. W.; Ji, G.-Z.; Jiang, X.-K. J. Org. Chem. 1996, 61, 746)。这表明,芳香烯通过四氧化钌(IV)配合物的氧化反应应经由苄自由基中间体的速率决定形成步骤。手性四氧化钌(IV)配合物1d对苯乙烯和顺式、反式β-甲基苯乙烯的环氧化实现了中等的对映选择性,其中顺式环氧化物的对映选择性高于反式产物。PPz*配体的不对称性以及联吡啶配体共同在Ru-IV=O基团周围形成一个“手性口袋”,通过非键合相互作用实现对映面分辨。由于无环苄自由基中间体在第二个C-O键形成之前会经历顺式-反式异构化,因此最终产物的对映体选择性(% ee(obs))不能仅由第一个不可逆C-O键形成步骤的面选择性(ee(facial))决定。通过顺式-反式环氧化物选择性或反式-反式环氧化物环闭合的对映选择性测量的异构化程度是控制环氧化物中对映体过量的重要因素。
  • Nucleophilic Isomerization of Epoxides by Pincer‐Rhodium Catalysts: Activity Increase and Mechanistic Insights
    作者:Yingying Tian、Eva Jürgens、Katharina Mill、Ronja Jordan、Theo Maulbetsch、Doris Kunz
    DOI:10.1002/cctc.201900594
    日期:2019.8.21
    present the efficient isomerization of epoxides into methyl ketones with a novel pincer‐rhodium complex under very mild conditions. The catalyst system has an excellent functional group tolerance and a wide array of epoxides was tested. The corresponding methyl ketones were obtained in very high yields with excellent chemo‐ and regioselectivity. In addition, we investigated mechanistic details like the isomerization
    在此,我们介绍了在非常温和的条件下用新型的pin络合物将环氧化物有效异构化为甲基酮的方法。该催化剂体系具有出色的官能团耐受性,并测试了多种环氧化物。相应的甲基酮以很高的收率获得,具有出色的化学和区域选择性。此外,我们研究了催化剂异构化等机理细节,并获得了证据,表明环氧化物的亲核开环后,催化循环遵循β-氢化物消除-还原消除途径。
  • Biomimetic Iron-Catalyzed Asymmetric Epoxidation of Aromatic Alkenes by Using Hydrogen Peroxide
    作者:Feyissa Gadissa Gelalcha、Gopinathan Anilkumar、Man Kin Tse、Angelika Brückner、Matthias Beller
    DOI:10.1002/chem.200800595
    日期:2008.8.28
    and general biomimetic non-heme Fe-catalyzed asymmetric epoxidation of aromatic alkenes by using hydrogen peroxide is reported herein. The catalyst consists of ferric chloride hexahydrate (FeCl(3)6 H(2)O), pyridine-2,6-dicarboxylic acid (H(2)(pydic)), and readily accessible chiral N-arenesulfonyl-N'-benzyl-substituted ethylenediamine ligands. The asymmetric epoxidation of styrenes with this system gave
    本文报道了通过使用过氧化氢的新颖且一般的仿生非血红素催化的芳族烯烃的不对称环氧化。催化剂由六水合氯化铁(FeCl(3)6 H(2)O),吡啶2,6-二羧酸(H(2)(pydic))和易于获得的手性N-芳烃磺酰基-N'-苄基组成取代的乙二胺配体苯乙烯与该体系的不对称环氧化产生高转化率,但对映体过量(ee)差,而较大的烯烃产生高转化率和ee值。对于反式二苯乙烯(1a)的环氧化,配体(S,S)-N-(4-甲苯磺酰基)-1,2-二苯基乙二胺((S,S)-4 a)及其N'-苄基衍生物((S,S)-5a)得到反式二苯乙烯氧化物的相反对映异构体,分别为(S,S)-2a和(R,R)-2a。烯烃环氧化的对映选择性受空间和电子因素控制,尽管空间作用更为主要。初步的机理研究表明,一些手性络合物的原位形成,例如[FeCl(L *)(2)(pydic)] HCl(L * =(S,S)-4 a或(S,S)-在催
  • Functionalized organolithium reagents. 8. Novel (.alpha.,.beta.-epoxyalkyl)lithium reagents via the lithiation of organyl-substituted epoxides
    作者:John J. Eisch、James E. Galle
    DOI:10.1021/jo00303a015
    日期:1990.8
  • BONINI, BIANCA F.;MACCAGNANI, GAETANO;MAZZANTI, GERMANA;ZANI, PAOLO, GAZZ. CHIM. ITAL., 120,(1990) N, C. 115-121
    作者:BONINI, BIANCA F.、MACCAGNANI, GAETANO、MAZZANTI, GERMANA、ZANI, PAOLO
    DOI:——
    日期:——
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫