A highly efficient Pd–C catalytic hydrogenation of pyridine nucleus under mild conditions
作者:Chuanjie Cheng、Jimin Xu、Rui Zhu、Lixin Xing、Xinyan Wang、Yuefei Hu
DOI:10.1016/j.tet.2009.08.011
日期:2009.10
A synergistic Pd–C catalytic hydrogenation of 4-pyridinecarboxamides straightforward to 4-piperidinecarboxamide hydrochlorides was developed in the presence of ClCH2CHCl2. It provided a novel strategy for highlyefficient hydrogenation of pyridine nuclear by using low-cost Pd–C catalyst undermildconditions.
Phenazinium Salt-Catalyzed Aerobic Oxidative Amidation of Aromatic Aldehydes
作者:Dasheng Leow
DOI:10.1021/ol5029354
日期:2014.11.7
Amides are prevalent in organic synthesis. Developing an efficientsynthesis that avoids expensive oxidants and heating is highly desirable. Here the oxidativeamidation of aromaticaldehydes is reported using an inexpensive metal-free visible light photocatalyst, phenazine ethosulfate, at low catalytic loading (1–2 mol %). The reaction proceeds at ambient temperature and uses air as the sole oxidant
IMIDAZOPYRIDAZINE AND IMIDAZOPYRIDINE COMPOUNDS AND USES THEREOF
申请人:Incyte Corporation
公开号:US20200199131A1
公开(公告)日:2020-06-25
Disclosed are compounds of Formula (I), methods of using the compounds for inhibiting ALK2 activity and pharmaceutical compositions comprising such compounds. The compounds are useful in treating, preventing or ameliorating diseases or disorders associated with ALK2 activity such as cancer.
A novel and efficient protocol for the synthesis of amides is reported which employs a BODIPY catalyzed oxidative amidation reaction between aromatic aldehydes and amines under visible light. Compared with the known Ru or Ir molecular catalysts and other organic dyes, the BODIPY catalyst showed higher reactivity toward this reaction. Mechanistic studies reveal that dioxygen could be activated through
[EN] HEPATITIS C VIRUS INHIBITORS<br/>[FR] INHIBITEURS DU VIRUS DE L'HÉPATITE C
申请人:BRISTOL MYERS SQUIBB CO
公开号:WO2011082077A1
公开(公告)日:2011-07-07
The present disclosure is generally directed to antiviral compounds, and more specifically directed to compounds which can inhibit the function of the NS5A protein encoded by Hepatitis C virus (HCV), compositions comprising such compounds, and methods for inhibiting the function of the NS5A protein.