A novel series of potent 5-HT3 receptor antagonists, ortho-substituted phenylureas 6a-z, is described in which the 5-membered ring of the previously reported indazoles and indolines has been replaced by an intramolecular hydrogen bond. High potency was found both for carbamate 6a and urea 6b. Granatane 6c was less potent than the equivalent tropane. Phenylurea 11c lacking the ortho substituent was inactive. Whereas further substitution could not be tolerated in the aromatic ring, activity was retained with a range of O-alkyl groups, compounds 6k-t. In addition, good activity was found for ortho ester 6u and sulfonamide 6x. The ortho-substituted phenylureas can therefore be regarded as bioisosteres of the 6,5-heterocycles indole, indazole, and indoline.
Disclosed are novel blends comprising segmented polyesteramides with minor amounts of carbodiimide containing materials.
The blends are characterized by excellent physical properties and improved compression set characteristics over the polyesteramides in the absence of the carbodiimide component. This allows the polymers obtained to find utility in the making of seals or gaskets which heretofore the base polyesteramides could not satisfy.
1,6-Naphthyridine-2-carboxylic acid benzylamides are potent anti-HCMV compounds. Replacement of the amide moiety by other groups containing internal hydrogen bonds was undertaken to extend the SAR. Our results indicated that the urea derivatives showed very good activity. (C) 2001 Elsevier Science Ltd. All rights reserved.