cluster for antimycins was recently identified, the enzymatic logic that governs the synthesis of antimycins has not yet been revealed. In this work, the biosynthetic pathway for antimycins was dissected by both genetic and enzymatic studies for the first time. A minimum set of enzymes needed for generation of the antimycin dilactone scaffold were identified, featuring a hybrid nonribosomal peptide synthetase
new acyl-CoA synthetase (ACS, UkaQ) with broad substrate specificity and an unusual catalytic mode was identified. Its stability and catalytic activity were remarkably improved by protein engineering, enabling it to synthesize a large variety of acyl-CoAs. In combination with permissive carboxylases, diverse extenderunits were synthesized and used to engineer the polyketidecarbonscaffold of antimycin
鉴定了一种具有广泛底物特异性和不寻常催化模式的新型酰基辅酶 A 合成酶(ACS,UkaQ)。蛋白质工程显着提高了其稳定性和催化活性,使其能够合成多种酰基辅酶 A。结合允许的羧化酶,合成了多种扩展单元,并用于设计抗霉素的聚酮化合物碳支架。