Co-catalyzed autoxidation of alkene in the presence of silane. The effect of the structure of silanes on the efficiency of the reaction and on the product distribution
摘要:
A systematic investigation of the structural effect of silanes on the Co-catalyzed reductive oxygenation of alkene in the presence of silane (Mukaiyama-Isayama reaction) showed that the efficiency of the reaction decreases with the increase of the steric bulk of the silanes. A similar trend was observed for the metal-exchange reaction between Co(III)-alkylperoxo complex and silane, too. The peroxidation of (S)-limonene, followed by deprotection of the derived silyl peroxides, provides a mixture of the corresponding monocyclic hydroperoxide 24 and the bicyclic one 25, the ratio being a marked function of the steric bulk of silanes. (c) 2005 Elsevier Ltd. All rights reserved.
Co-catalyzed autoxidation of alkene in the presence of silane. The effect of the structure of silanes on the efficiency of the reaction and on the product distribution
摘要:
A systematic investigation of the structural effect of silanes on the Co-catalyzed reductive oxygenation of alkene in the presence of silane (Mukaiyama-Isayama reaction) showed that the efficiency of the reaction decreases with the increase of the steric bulk of the silanes. A similar trend was observed for the metal-exchange reaction between Co(III)-alkylperoxo complex and silane, too. The peroxidation of (S)-limonene, followed by deprotection of the derived silyl peroxides, provides a mixture of the corresponding monocyclic hydroperoxide 24 and the bicyclic one 25, the ratio being a marked function of the steric bulk of silanes. (c) 2005 Elsevier Ltd. All rights reserved.
The kinetics and mechanism of thermal decomposition of R1R2(H)SiOOR3 silylperoxides have been studied. It has been shown that peroxides generated diorganosilanones R1R2Si=O, with a high yield in the temperature range 130-180°C. A mechanism is suggested for the silanone formation. The interaction of si1anones with cyclosiloxanes, triethylsilane, α-methylstyrene has been investigated as well as the cyclisation
研究了R 1 R 2(H)SiOOR 3甲硅烷基过氧化物的热分解动力学和机理。已经表明,过氧化物在130-180℃的温度范围内以高产率产生了二有机硅酮酮R 1 R 2 Si = O。建议了一种机制来形成硅烷酮。已经研究了硅烷酮与环硅氧烷,三乙基硅烷,α-甲基苯乙烯的相互作用以及硅烷酮的环化。