Discovery and modification of sulfur-containing heterocyclic pyrazoline derivatives as potential novel class of β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors
摘要:
A series of sulfur-containing heterocyclic pyrazoline derivatives (C1-C18; D1-D9) have been synthesized and purified (all are new except one) to be screened for FabH inhibitory activity. Compound C14 showed the most potent biological activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis (MIC values: 1.56-3.13 mu g/mL), being comparable with the positive control, while D6 performed the best in the thiazolidinone series (MIC values: 3.13-6.25 mu g/mL). They also demonstrated strong broad-spectrum antimicrobial activity. Compounds C14 and D6 exhibited the most potent E. coli FabH inhibitory activity with IC50 of 4.6 and 8.4 mu M, respectively, comparable with the positive control DDCP (IC50 = 2.8 mu M). Docking simulation was performed to position compound C14 and D6 into the E. coli FabH structure active site to determine the probable binding model. The structurally modification of previous compounds and the attempt in innovative target have brought a positive progress. (C) 2012 Published by Elsevier Ltd.
Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities
Antimitotic agents comprising a modified chalcone or modified chalcone derivative are disclosed. The modified chalcone or modified chalcone derivative compounds are of the general formula CHAL-LIN—COV, wherein CHAL is a chalcone or chalcone derivative portion, LIN is an optional linker portion, and COV is a covalent bonding portion (e.g., an α,β-unsaturated thiol ester group). The modified chalcone or modified chalcone derivative compounds provide an improved method of interference with tubulin polymerization, for example by covalent (and essentially irreversible) bonding between tubulin and the covalent bonding portion, potentially resulting in a decrease in tumor size and/or disappearance of the cancer, to the benefit of cancer patients.
Antimitotic agents comprising a modified chalcone or modified chalcone derivative are disclosed. The modified chalcone or modified chalcone derivative compounds are of the general formula CHAL-LIN-COV, wherein CHAL is a chalcone or chalcone derivative portion, LIN is an optional linker portion, and COV is a covalent bonding portion (e.g., an a,ss-unsaturated thiol ester group). The modified chalcone or modified chalcone derivative compounds provide an improved method of interference with tubulin polymerization, for example by covalent (and essentially irreversible) bonding between tubulin and the covalent bonding portion, potentially resulting in a decrease in tumor size and/or disappearance of the cancer, to the benefit of cancer patients.
Synthesis and anti-inflammatory activity of chalcone derivatives
作者:Felipe Herencia、M.Luisa Ferrándiz、Amalia Ubeda、JoséN. Domínguez、Jaime E. Charris、Gricela M. Lobo、M.José Alcaraz
DOI:10.1016/s0960-894x(98)00179-6
日期:1998.5
Chalcones and their derivatives were synthesized and evaluated for their anti-inflammatory activity. In vitro, chalcones 2, 4, 8, 10 and 13 inhibited degranulation and 5-lipoxygenase in human neutrophils, whereas 11 behaved as scavenger of superoxide. Only four compounds (4-7) inhibited cyclo-oxygenase-2 activity. The majority of these samples showed anti-inflammatory effects in the mouse air pouch model. (C) 1998 Elsevier Science Ltd. All rights reserved.
Modified Chalcone Compounds as Antimitotic Agents
申请人:Rose Seth D.
公开号:US20100222380A1
公开(公告)日:2010-09-02
Antimitotic agents comprising a modified chalcone or modified chalcone derivative are disclosed. The modified chalcone or modified chalcone derivative compounds are of the general formula CHAL-LIN-COV, wherein CHAL is a chalcone or chalcone derivative portion, LIN is an optional linker portion, and COV is a covalent bonding portion (e.g., an α,β-unsaturated thiol ester group). The modified chalcone or modified chalcone derivative compounds provide an improved method of interference with tubulin polymerization, for example by covalent (and essentially irreversible) bonding between tubulin and the covalent bonding portion, potentially resulting in a decrease in tumor size and/or disappearance of the cancer, to the benefit of cancer patients.