Rigid Molecular Tripod with an Adamantane Framework and Thiol Legs. Synthesis and Observation of an Ordered Monolayer on Au(111)
摘要:
Tripod-shaped trithiols 1-3, containing CH2SH groups at the three bridgehead positions of the adamantane framework and a halogen-containing group [Br (1), p-BrC6H4 (2), or p-IC6H4 (3)] at the fourth bridgehead, were synthesized, and self-assembled monolayers (SAMs) were prepared on atomically flat Au(111) surfaces. The three-point chemisorption of these tripods was confirmed by polarization modulation infrared reflection absorption spectroscopy, which showed the absence of a S-H stretching band. Scanning tunneling microscopy of the SAM of 1 exhibited a hexagonal arrangement of the adsorbed molecule with a lattice constant of 8.7 angstrom. A unidirectionally oriented, head-to-tail array of 1, which allows the close approach of neighboring molecules, is proposed as a reasonable model of the two-dimensional crystal, where the adsorbed sulfur atoms form a quasi-(root 3 x root 3)R30 degrees lattice. The charge of the electrochemical reductive desorption of the SAM of 1 was in good agreement with the expected surface coverage, while the SAMs of 2 and 3 showed somewhat less (ca. 70%) charge. The large negative reduction peak potentials, observed for the SAM of 1, are taken to indicate a tight anchoring of this tripod by three sulfur atoms.
Rigid Molecular Tripod with an Adamantane Framework and Thiol Legs. Synthesis and Observation of an Ordered Monolayer on Au(111)
摘要:
Tripod-shaped trithiols 1-3, containing CH2SH groups at the three bridgehead positions of the adamantane framework and a halogen-containing group [Br (1), p-BrC6H4 (2), or p-IC6H4 (3)] at the fourth bridgehead, were synthesized, and self-assembled monolayers (SAMs) were prepared on atomically flat Au(111) surfaces. The three-point chemisorption of these tripods was confirmed by polarization modulation infrared reflection absorption spectroscopy, which showed the absence of a S-H stretching band. Scanning tunneling microscopy of the SAM of 1 exhibited a hexagonal arrangement of the adsorbed molecule with a lattice constant of 8.7 angstrom. A unidirectionally oriented, head-to-tail array of 1, which allows the close approach of neighboring molecules, is proposed as a reasonable model of the two-dimensional crystal, where the adsorbed sulfur atoms form a quasi-(root 3 x root 3)R30 degrees lattice. The charge of the electrochemical reductive desorption of the SAM of 1 was in good agreement with the expected surface coverage, while the SAMs of 2 and 3 showed somewhat less (ca. 70%) charge. The large negative reduction peak potentials, observed for the SAM of 1, are taken to indicate a tight anchoring of this tripod by three sulfur atoms.
An area-demanding tripodal trithiol containing six peripheral methyl groups was synthesized, and its selfassembled monolayer (SAM) was formed onto a Au(111) surface, which was electrochemically characterized. The SAM showed a significant lowering of the surface coverage due to the bulkiness of the methyl groups, as demonstrated by the charge of reductive elimination. The experimentally determined surface
Tripod-shaped trithiols 1-3, containing CH2SH groups at the three bridgehead positions of the adamantane framework and a halogen-containing group [Br (1), p-BrC6H4 (2), or p-IC6H4 (3)] at the fourth bridgehead, were synthesized, and self-assembled monolayers (SAMs) were prepared on atomically flat Au(111) surfaces. The three-point chemisorption of these tripods was confirmed by polarization modulation infrared reflection absorption spectroscopy, which showed the absence of a S-H stretching band. Scanning tunneling microscopy of the SAM of 1 exhibited a hexagonal arrangement of the adsorbed molecule with a lattice constant of 8.7 angstrom. A unidirectionally oriented, head-to-tail array of 1, which allows the close approach of neighboring molecules, is proposed as a reasonable model of the two-dimensional crystal, where the adsorbed sulfur atoms form a quasi-(root 3 x root 3)R30 degrees lattice. The charge of the electrochemical reductive desorption of the SAM of 1 was in good agreement with the expected surface coverage, while the SAMs of 2 and 3 showed somewhat less (ca. 70%) charge. The large negative reduction peak potentials, observed for the SAM of 1, are taken to indicate a tight anchoring of this tripod by three sulfur atoms.