Synthesis and structure–activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores
摘要:
Using N-(2,6-dimethyl)phenyl-2-piperidinecarboxamide (1) and N-(alpha -methylbenzyl)-2-piperidinecarboxamide (2) as structural leads, a variety of analogues were synthesised and evaluated for anticonvulsant activity in the MES test in mice. In the N-benzyl series, introduction of 3-Cl, 4-Cl, 3,4-Cl-2, or 3-CF3 groups on the aromatic ring led to an increase in MES activity. Replacement of the alpha -methyl group by either i-Pr or benzyl groups enhanced MES activity with no increase in neurotoxicity. Substitution on the piperidine ring nitrogen led to a decrease in MES activity and neurotoxicity, while reduction of the amide carbonyl led to a complete loss of activity. Movement of the carboxamide group to either the 3- or 4-positions of the piperidine ring decreased MES activity and neurotoxicity. Incorporation of the piperidine ring into a tetrahydroisoquinoline or diazahydrinone nucleus led to increased neurotoxicity. In the N-(2,6-dimethyl)phenyl series, opening of the piperidine ring between the 1- and 6-positions gave the active norleucine derivative 75 (ED50 = 5.8 mg kg(-1), TD50 = 36.4 mg kg(-1), PI = 6.3). Replacement of the piperidine ring of I by cycloalkane (cyclohexane, cyclopentane, and cyclobutane) resulted in compounds with decreased MES activity and neurotoxicity, whereas replacement of the piperidine ring by a 4-pyridyl group led to a retention of MES activity with a comparable PI. Simplification of the 2-piperidinecarboxamide nucleus of 1 into a glycinecarboxamide nucleus led to about a six-fold decrease in MES activity. The 2,6-dimethylanilides were the most potent compounds in the MES test in each group of compounds evaluated, and compounds 50 and 75 should be useful leads in the development of agents for the treatment of tonic-clonic and partial seizures in man. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
Iron‐Catalyzed Oxidative Coupling Reaction of Isocyanides and Simple Alkanes towards Amide Synthesis
作者:Hongdong Yuan、Zhiqiang Liu、Yushu Shen、Hongbin Zhao、Chunju Li、Xueshun Jia、Jian Li
DOI:10.1002/adsc.201801619
日期:2019.4.23
An iron‐catalyzed oxidative coupling reaction of isocyanide and readily available alkane has been disclosed. In the presence of a catalytic amount of FeCp2 (10 mol%), heating a mixture of alkane, isocyanide, and DTBP in DCE allows for the formation of an amide. This reaction tolerates many simple alkanes including cycloalkanes and chain alkanes. Furthermore, a series of aromatic isocyanides having