Bifunctional even-electron ions. III. Fragmentation behaviour of aliphatic hydroxonium ions containing an additional carbomethoxy group
摘要:
AbstractThe primary and subsequent fragmentations of the bifunctional oxonium ions \documentclass{article}\pagestyle{empty}\begin{document}${\rm R} \!-\! \mathop {\rm C}\limits^ + ({\rm OH})\! -\! ({\rm CH}_2)_n \! - \! {\rm COOCH}_3 $\end{document} (n = 0−5), a, are dominated by functional group interactions. Loss of CH3OH is the only appreciable primary fragmentation of the higher homoiogues, but for the lowest homologue (a0) this reaction is missing. Instead, CO loss is observed. The next homologue (a1) shov.s loss of CH2CO besides loss of CH3OH. The mode of the subsequent fragmentations is dependent on the chain length separating the functional group, and formation of cyclic ions is typical of the fragmentation behaviour of a2 and a3. Evidence for proton transfer from the carbonyl oxygen to the methoxy group of a protonated ester group is presented.
Hydroxy-Directed Amidation of Carboxylic Acid Esters Using a Tantalum Alkoxide Catalyst
作者:Hiroaki Tsuji、Hisashi Yamamoto
DOI:10.1021/jacs.6b09482
日期:2016.11.2
the chemoselective synthesis of amides by using a metal-catalyzed hydroxy-directed reaction. A hydroxy group located at the β-position of an ester group promoted the activation of a carbonyl group with a tantalum alkoxide catalyst followed by amidation reactions, leading to a wide variety of β-hydroxyamides with excellent chemeselectivity. The chemoselective amidation strategy can be extended to the
A Reformatsky-type reaction has been developed using iron catalysis in acetonitrile or DMF. Reduction of iron(II) bromide by manganese metal in acetonitrile provides a low-valent iron catalyst, which is the active species; under these conditions, α-chloroesters or nitriles can both be converted into their corresponding derivatives. The method was applicable to both ketones and aldehydes, resulting in the formation of β-hydroxyesters under mild conditions.
β-hydroxy esters in the presence of catalytic amounts of the NiBr2(2,2′-bipyridine) complex has been developped from mixed electrolysis of methallylchloride, or methylchloroacetate with several carbonylcompounds, using a one-compartment cell equiped of a sacrificial zinc anode.
Coupling reactions of α-chloroesters with aryl halides (α-arylation) or carbonyl compounds (Reformatsky) using nickel catalyst allow, under mild conditions, the preparation of various functionalized aryl propionic acid derivatives or β-hydroxyesters. In the synthesis of aryl propionic acid derivatives, the process is efficient with aryl halides bearing either electron-withdrawing or electron-donating