摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(α,β,β,β)-1-anisyl-2-methyl-3,4-dicyanocyclobutane

中文名称
——
中文别名
——
英文名称
(α,β,β,β)-1-anisyl-2-methyl-3,4-dicyanocyclobutane
英文别名
(1R,2S,3R,4R)-3-(4-methoxyphenyl)-4-methylcyclobutane-1,2-dicarbonitrile
(α,β,β,β)-1-anisyl-2-methyl-3,4-dicyanocyclobutane化学式
CAS
——
化学式
C14H14N2O
mdl
——
分子量
226.278
InChiKey
JPSBGCARMLIQKV-VKKKGTNTSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2
  • 重原子数:
    17
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.43
  • 拓扑面积:
    56.8
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为产物:
    参考文献:
    名称:
    Photoinduced Electron Transfer Reactions of Aryl Olefins. 2. Cis−Trans Isomerization and Cycloadduct Formation in Anethole−Fumaronitrile Systems in Polar Solvents
    摘要:
    In acetonitrile, the photoreactions of cis-anethole, cA, or trans-anethole, tA, with fumarodinitrile, FN, lead to isomerization of both substrate and quencher and to mixed [2 + 2] cycloaddition. By NMR analysis and by NOE measurements it was shown that the same four stereoisomers of 1-anisyl-2-methyl-3,4-dicyanocyclobutane are formed in equal yields regardless of whether the substrate is cA or tA. The configuration of the anethole-derived moiety in these adducts is always trans, whereas all possible configurations of the cyano groups occur, From Stern-Volmer experiments it was concluded that the quenching mechanism is electron transfer, not exciplex formation. Electron-transfer quenching is also the pathway leading to the cycloadducts, as was established by photoinduced electron-transfer sensitization. These photoreactions give rise to strong nuclear spin polarizations (CIDNP) in the starting and isomerized forms of both substrate and quencher as well as in the cycloadducts. Radical pairs A(.+)FN(.-) (RP I) consisting of the radical cation of the anethole and the radical anion of fumarodinitrile were identified as the predominant source of the polarizations. The starting materials are regenerated by back electron transfer of singlet pairs; likewise, back electron transfer of triplet pairs (3)RP I to give either triplet anethole, (3)A, or triplet fumarodinitrile, (FN)-F-3, occurs and constitutes the main pathway to isomerization of substrate and quencher. The cycloadducts are also formed via (3)RP I; a significant participation of free radicals in their generation was ruled out. The stereochemistry of the products and the different ratios of polarization intensities of the isomerized olefin and the cycloadducts can only be explained by the intermediacy of a triplet biradical (3)BR. After intersystem crossing to the singlet state, ring closure of (1)BR competes with biradical scission. The latter process provides an additional isomerization pathway, which differs from the pathway via triplet olefins by leading only to one-way cis-trans isomerization of the substrate. (3)BR is formed by geminate combination of triplet radical ion pairs (3)RP I; an indirect pathway via back electron transfer of (3)RP I to give 3A or 3FN followed by attack to the other olefin, as has been proposed for similar photocycloadditions, could be excluded unambiguously. Despite the different precursor multiplicity, the mechanism of the [2 + 2] photocycloaddition of donor and acceptor olefins investigated in this work is thus identical to the mechanism of the Paterno-Buchi reaction between donor olefins and electron-deficient carbonyl compounds which we recently reported. The CIDNP experiments at variable quencher concentration revealed the presence of an additional radical pair RP II, also containing A(.+) but an anion other than FN.-. It was shown that RP II results from a biphotonic process. These findings were explained by two-photon ionization of the anethole and formation of an oligomeric anion of acetonitrile.
    DOI:
    10.1021/ja9511578
点击查看最新优质反应信息

同类化合物

(R)-3-(叔丁基)-4-(2,6-二异丙氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (+)-6,6'-{[(1R,3R)-1,3-二甲基-1,3基]双(氧)}双[4,8-双(叔丁基)-2,10-二甲氧基-丙二醇 麦角甾烷-6-酮,2,3,22,23-四羟基-,(2a,3a,5a,22S,23S)- 鲁前列醇 顺式6-(对甲氧基苯基)-5-己烯酸 顺式-铂戊脒碘化物 顺式-四氢-2-苯氧基-N,N,N-三甲基-2H-吡喃-3-铵碘化物 顺式-4-甲氧基苯基1-丙烯基醚 顺式-2,4,5-三甲氧基-1-丙烯基苯 顺式-1,3-二甲基-4-苯基-2-氮杂环丁酮 非那西丁杂质7 非那西丁杂质3 非那西丁杂质22 非那西丁杂质18 非那卡因 非布司他杂质37 非布司他杂质30 非布丙醇 雷诺嗪 阿达洛尔 阿达洛尔 阿莫噁酮 阿莫兰特 阿维西利 阿索卡诺 阿米维林 阿立酮 阿曲汀中间体3 阿普洛尔 阿普斯特杂质67 阿普斯特中间体 阿普斯特中间体 阿托西汀EP杂质A 阿托莫西汀杂质24 阿托莫西汀杂质10 阿托莫西汀EP杂质C 阿尼扎芬 阿利克仑中间体3 间苯胺氢氟乙酰氯 间苯二酚二缩水甘油醚 间苯二酚二异丙醇醚 间苯二酚二(2-羟乙基)醚 间苄氧基苯乙醇 间甲苯氧基乙酸肼 间甲苯氧基乙腈 间甲苯异氰酸酯