Novel pentamidine derivatives: Synthesis, anti-tumor properties and polynucleotide-binding activities
摘要:
Novel amidino-substituted conformationally restricted derivatives of pentamidine were synthesized and their antiproliferative activity against several human cancer cell lines determined. It was found that introduction of furandicarboxamide core moiety (9, 10) increases antiproliferative activity as well as selectivity against certain tumor cell lines in comparison with amidino-substituted furan-mono-carboxamide (5, 6). Unlike the furan series where iso-propyl substituted amidine (10) exhibits more potent overall antiproliferative activity and selectivity toward certain cell lines, the same was found for unsubstituted amidines in pyridine series. Amongst all tested compounds the compound 10 is the only one that possesses antiproliferative activity against SW 620 cell line (4 mu M). Spectroscopic studies of the interactions of prepared diamidines with double-stranded DNA and RNA polynucleotides show that all compounds preferentially bind into the minor groove of DNA, while most of them intercalate into RNA. The structure-dependant biological activity and the lack of DNA/RNA selective binding suggest that the mechanism of action of the here-presented compounds is controlled not only by the interactions with cellular nucleic acids, but also with other more specific protein targets. (C) 2011 Elsevier Masson SAS. All rights reserved.
Novel pentamidine derivatives: Synthesis, anti-tumor properties and polynucleotide-binding activities
摘要:
Novel amidino-substituted conformationally restricted derivatives of pentamidine were synthesized and their antiproliferative activity against several human cancer cell lines determined. It was found that introduction of furandicarboxamide core moiety (9, 10) increases antiproliferative activity as well as selectivity against certain tumor cell lines in comparison with amidino-substituted furan-mono-carboxamide (5, 6). Unlike the furan series where iso-propyl substituted amidine (10) exhibits more potent overall antiproliferative activity and selectivity toward certain cell lines, the same was found for unsubstituted amidines in pyridine series. Amongst all tested compounds the compound 10 is the only one that possesses antiproliferative activity against SW 620 cell line (4 mu M). Spectroscopic studies of the interactions of prepared diamidines with double-stranded DNA and RNA polynucleotides show that all compounds preferentially bind into the minor groove of DNA, while most of them intercalate into RNA. The structure-dependant biological activity and the lack of DNA/RNA selective binding suggest that the mechanism of action of the here-presented compounds is controlled not only by the interactions with cellular nucleic acids, but also with other more specific protein targets. (C) 2011 Elsevier Masson SAS. All rights reserved.
Facile Amide Bond Formation from Carboxylic Acids and Isocyanates
作者:Kaname Sasaki、David Crich
DOI:10.1021/ol200531k
日期:2011.5.6
A wide variety of carboxylic acids in the form of their salts condense with aryl isocyanates at room temperature with loss of carbon dioxide to give the corresponding amides in high yield. Application of the reaction to acyl isocyanates gives unsymmetric imides. The reaction is compatible with hydroxyl groups and both Fmoc and Boc protecting groups for amines and is applicable to aliphatic, aromatic, and heteroaromatic acids.
Novel pentamidine derivatives: Synthesis, anti-tumor properties and polynucleotide-binding activities
Novel amidino-substituted conformationally restricted derivatives of pentamidine were synthesized and their antiproliferative activity against several human cancer cell lines determined. It was found that introduction of furandicarboxamide core moiety (9, 10) increases antiproliferative activity as well as selectivity against certain tumor cell lines in comparison with amidino-substituted furan-mono-carboxamide (5, 6). Unlike the furan series where iso-propyl substituted amidine (10) exhibits more potent overall antiproliferative activity and selectivity toward certain cell lines, the same was found for unsubstituted amidines in pyridine series. Amongst all tested compounds the compound 10 is the only one that possesses antiproliferative activity against SW 620 cell line (4 mu M). Spectroscopic studies of the interactions of prepared diamidines with double-stranded DNA and RNA polynucleotides show that all compounds preferentially bind into the minor groove of DNA, while most of them intercalate into RNA. The structure-dependant biological activity and the lack of DNA/RNA selective binding suggest that the mechanism of action of the here-presented compounds is controlled not only by the interactions with cellular nucleic acids, but also with other more specific protein targets. (C) 2011 Elsevier Masson SAS. All rights reserved.