Synthesis of 1,2,3,triazole modified analogues of hydrochlorothiazide via click chemistry approach and in-vitro α-glucosidase enzyme inhibition studies
作者:Hina Siddiqui、M. A. A. Baheej、Saeed Ullah、Fazila Rizvi、Shazia Iqbal、Haroon M. Haniffa、Atia-tul Wahab、M. Iqbal Choudhary
DOI:10.1007/s11030-021-10314-3
日期:2022.8
The current study was aimed to discover potent inhibitors of α-glucosidase enzyme. A 25 membered library of new 1,2,3-triazole derivatives of hydrochlorothiazide (1) (HCTZ, a diuretic drug also being used for the treatment of high blood pressure) was synthesized through click chemistry approach. The structures of all derivatives 2–26 were deduced by MS, IR, 1H-NMR, and 13C-NMR spectroscopic techniques. All the compounds were found to be new. Compounds 1–26 were evaluated for α-glucosidase enzyme inhibition activity. Among them, 18 compounds showed potent inhibitory activity against α-glucosidase with IC50 values between 24 and 379 µM. α-Glucosidase inhibitor drug acarbose (IC50 = 875.75 ± 2.08 μM) was used as the standard. Kinetics studies of compounds 6, 9, 11, 12, 15, 20, 23, and 24 revealed that only compound 15 as a mixed-type of inhibitor, while others were non-competitive inhibitors of α-glucosidase enzyme. All the compounds were found to be non-cytotoxic when checked against mouse fibroblast 3T3 cell line.
本研究旨在发现α-葡萄糖苷酶酶的有效抑制剂。通过点击化学方法,合成了一系列25个新型的1,2,3-三唑衍生物,这些衍生物是由氢氯噻嗪(1)(HCTZ,一种用于治疗高血压的利尿药物)衍生而来。所有衍生物2-26的结构通过MS、IR、1H-NMR和13C-NMR光谱技术推断。所有化合物均为新发现。对化合物1-26进行了α-葡萄糖苷酶酶抑制活性评估。其中,18个化合物显示出对α-葡萄糖苷酶的强抑制活性,IC50值介于24至379 µM之间。作为标准,α-葡萄糖苷酶抑制剂药物阿卡波糖(IC50 = 875.75 ± 2.08 μM)被用作对照。对化合物6、9、11、12、15、20、23和24的动力学研究表明,只有化合物15为混合型抑制剂,而其他均为非竞争性α-葡萄糖苷酶酶抑制剂。所有化合物在对小鼠成纤维细胞3T3细胞系的检测中均未显示出细胞毒性。