摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-叔丁氨基-4-环丙氨基-6-甲硫基-s-三嗪 | 28159-98-0

中文名称
2-叔丁氨基-4-环丙氨基-6-甲硫基-s-三嗪
中文别名
2-叔丁胺基-4-环丙胺基-6-甲硫基-S-三嗪;N-环丙基-N’-(1,1-二甲基乙基)-6-甲硫基-1,3,5-三嗪-2,4-二胺;2-(叔丁氨基)-4-(环丙氨基)-6-(甲硫基)-1,3,5-三嗪;2-叔丁胺基-4-环丙氨基-6-甲硫基-S-三嗪
英文名称
2-methylthio-4-t-butylamino-6-cyclopropyl-amino-s-triazine
英文别名
Cybutryne;2-N-tert-butyl-4-N-cyclopropyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine
2-叔丁氨基-4-环丙氨基-6-甲硫基-s-三嗪化学式
CAS
28159-98-0
化学式
C11H19N5S
mdl
——
分子量
253.371
InChiKey
HDHLIWCXDDZUFH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    128-1330C
  • 沸点:
    428.0±28.0 °C(Predicted)
  • 密度:
    1.20±0.1 g/cm3(Predicted)
  • 溶解度:
    可溶于氯仿(少许)、DMSO(少许)、甲醇(少许)
  • 颜色/状态:
    Crystals from water
  • 蒸汽压力:
    6.6X10-7 mm Hg
  • 稳定性/保质期:
    Stable under recommended storage conditions.
  • 保留指数:
    2095

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    17
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.73
  • 拓扑面积:
    88
  • 氢给体数:
    2
  • 氢受体数:
    6

ADMET

毒理性
  • 毒性总结
识别和使用:Cybutryne用作防污漆中的增效杀藻剂。人类研究:Cybutryne通过线粒体功能障碍和氧化应激诱导HepG2细胞凋亡。动物研究:Cybutryne抑制ATP合成。分析ATP合成涉及的各个步骤表明,这种抑制作用是由于小尺寸孔道的开启。生态毒性研究:在海洋无脊椎动物早期发育阶段进行的测试发现,与其他常用的“增效”生物杀灭剂相比,cybutryne的毒性最低。然而,在自养生物的生长测试中,它的毒性更大。Cybutryne对附石藻和浮游植物的毒性高于阿特拉津。在环境相关浓度下,它诱导了太平洋牡蛎(Crassostrea gigas)配子或胚胎的精子毒性和胚胎毒性。即使在最低浓度下,它对微型动物数量的影响也很大,导致线虫(占主导地位的微型动物类群)数量急剧下降,寡毛纲的相对重要性增加。另一项研究评估了Cybutryne毒性对日本雪蟹(Metanephrops japonicus)外骨骼的影响,这是面对环境的外层。在不同的生物杀灭剂暴露水平下,肝胰腺的蜕皮激素受体(Mj-EcR)、胰蛋白酶(Mj-Tryp)和丝氨酸蛋白酶(Mj-SP)在第1、4或7天上调。相比之下,鳃Mj-chi5、Mj-Tryp和Mj-SP在10ug/L的暴露下,与第7天的对照组相比,表现出晚期上调反应。Mj-chi1在10ug/L的暴露下显示出早期上调,而Mj-chi4在鳃中的转录没有变化。鳃Mj-EcR的表达模式普遍下调。此外,在暴露于三种生物杀灭剂浓度的M. japonicus中,观察到存活率下降和外骨骼表面粗糙度的变化。单独的研究表明,Cybutryne在环境相关浓度下抑制珊瑚的光合作用,与其作为光系统II抑制剂的作用机制一致。
IDENTIFICATION AND USE: Cybutryne is used as a booster algicide in antifouling paint. HUMAN STUDIES: Cybutryne induces HepG2 cell apoptosis through mitochondrial dysfunction and oxidative stress. ANIMAL STUDIES: Cybutryne inhibits the ATP synthesis. The analysis of the various steps involved in the ATP synthesis suggests that the inhibition is due to the opening of small-size pores. ECOTOXICITY STUDIES: When tested on early developmental stages of marine invertebrates cybutryne was found to be the least toxic among other commonly used 'booster'' biocides. However, it was more toxic when tested on the growth of autotrophic species. The toxicity of cybutryne towards periphyton and phytoplankton was shown to be higher than that of atrazine. It induced spermiotoxicity and embryotoxicity at environmentally relevant concentrations in Pacific oyster (Crassostrea gigas) gametes or embryos. It had a significant impact on meiofauna abundance, even at the lowest concentrations, causing a drastic decline in the abundance of nematodes (the dominant meiofaunal taxon) and an increase of the relative importance of oligochaetes. Other study evaluated the effects of cybutryne toxicity on the exoskeleton of Metanephrops japonicus, which is the outer layer facing the environment. Ecdysteroid receptor (Mj-EcR), trypsin (Mj-Tryp), and serine proteinase (Mj-SP) in the hepatopancreas were upregulated in response to different exposure levels of the biocide at day 1, 4, or 7. In contrast, gill Mj-chi5, Mj-Tryp, and Mj-SP exhibited late upregulated responses to 10 ug/L compared to the control at day 7. Mj-chi1 showed early upregulation upon exposure to 10 ug/L and Mj-chi4 showed no changes in transcription in the gill. Gill Mj-EcR presented generally downregulated expression patterns. In addition, decreased survival and change of exoskeleton surface roughness were observed in M. japonicus exposed to the three concentrations of the biocide. Separate studies have shown that cybutryne inhibits coral photosynthesis at environmentally relevant concentrations, consistent with its mode of action as a photosystem II inhibitor.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
三种最常用的抗污增效生物杀虫剂,通常与铜或铜化合物结合使用,分别是Irgarol 1051、敌草隆和Zn吡硫酮。本研究代表了对这些抗污生物杀虫剂相互结合以及与三种重金属(Cu、Cd和Zn)在二元混合物中对海洋藻类拟菱形藻的交互作用效果的评估。进行了72小时的生长抑制测试,并确定了化学品的半抑制浓度(IC50)值以及几个浓度的生长抑制(%)。使用浓度加和模型和概率模型两种模型评估了所有化学品二元混合物的联合效应。得出以下毒性递增顺序:Cd < Zn < Cu < 敌草隆 < Zn吡硫酮 < Irgarol 1051。有机化学品相互结合对拟菱形藻生长的交互效应是强烈的协同作用。Irgarol 1051与Cd结合表现出协同效应,而Zn吡硫酮与铜和镉的作用是严格的拮抗作用,两种模型的结果在几乎所有混合物中都是一致的。
Three of the most commonly used antifouling booster biocides that are usually combined with copper or copper compounds are Irgarol 1051, Diuron, and Zn pyrithione. This study represents an assessment of the interactive effects of the antifouling biocides combined with each other, and with three heavy metals (Cu, Cd, and Zn) in binary mixtures, on the marine algae Chaetoceros gracilis. Seventy-two hour growth inhibition tests were carried out, and the IC50 values of the chemicals were determined along with growth inhibition (%) for several concentrations. The joint effect of the binary mixtures of all the chemicals was assessed by using two models, concentration addition model and the model of probabilities. The following increasing order of toxicity was obtained: Cd < Zn < Cu < Diuron < Zn pyrithione < Irgarol 1051. The interactive effects of the organic chemicals combined with each other on the growth of Ch. gracilis were firmly synergistic. Irgarol 1051 combined with Cd performed synergistic effects, and Zn pyrithione with copper and cadmium action was strictly antagonistic, and the results of the two models were in agreement in almost all mixtures.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
两种防污增效剂杀菌剂——Irgarol 1051(2-甲基巯基-4-叔丁基氨基-6-环丙基氨基-s-三嗪)和敌草隆(1-(3,4-二氯苯基)-3,3-二甲基脲)及其代谢物M1(2-甲基巯基-4-叔丁基氨基-s-三嗪)、DCPMU(1-(3,4-二氯苯基)-3-甲基脲)、DCPU(1-(3,4-二氯苯基脲))和DCA(3,4-二氯苯胺)以及铜的单一和联合作用进行了研究。两种浮游植物微生物——绿藻杜氏藻和硅藻劲直舟形藻分别暴露于上述化合物的不同浓度中,单独暴露和二元混合物暴露,持续时间为96小时。通过每天计数测试微生物的细胞数量来估计EC(50)值。发现这六种化合物和金属单独应用时的毒性,按递减顺序排列为:Irgarol 1051>敌草隆>M1>DCPMU>DCA>Cu>DCPU,而对于绿藻和硅藻,分别为Irgarol 1051>敌草隆>M1>DCA。发现硅藻在所有测试化合物存在时更敏感,除了敌草隆。Irgarol 1051和M1的共同存在对两种微生物显示出加性效应。由于铜与Irgarol 1051或M1的联合作用,几乎所有测试的混合物都观察到了相同的结果。敌草隆与其代谢物DCPMU和DCA的联合作用在几乎所有情况下对两种浮游植物种类产生了协同作用。相反,由于铜与敌草隆或其代谢物之一的联合作用,观察到了拮抗作用。
Single and joint effects of two antifouling booster biocides, Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) and diuron (1-(3,4 dichlorophenyl)-3,3 dimethyl urea), their metabolites, M1 (2-methylthio-4-tert-butylamino-s-triazine), DCPMU (1-(3,4-dichlorophenyl)-3 methyl urea), DCPU (1-(3,4 dichlorophenyl urea) and DCA (3,4-dichloroaniline), respectively, as well as copper were examined. Two phytoplanktonic microorganisms, the green alga Dunaliella tertiolecta and the diatom Navicula forcipata were exposed to various concentrations of the aforementioned compounds both alone and in binary mixtures during a period of 96 hr. Estimation of EC(50) values was performed by daily cell number counting of the tested microorganisms. The toxicity of the six compounds and the metal, applied singly, was found to be, in decreasing order, Irgarol 1051>diuron>M1>DCPMU>DCA>Cu>DCPU and Irgarol 1051>diuron>M1>DCA for the green alga and the diatom, respectively. Diatoms were found to be more sensitive in the presence of all the tested compounds, except diuron. Co-existence of irgarol 1051 and M1 revealed additive effects on both microorganisms. Same results were observed owing to the joint action of copper with either Irgarol 1051 or M1 for almost all the examined mixtures. Combined effects of diuron with its metabolites DCPMU and DCA resulted in synergism in almost all cases, for both species of phytoplankton. On the contrary, antagonistic effects were observed owing to the joint action of copper with either diuron or one of its metabolites.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
潮汐和淡水流入影响河口区域的水流动态,从而控制着污染物的暴露程度。在这个实验中,我们现场测试了铜和除草剂Irgarol 1051两次脉冲对海草Zostera capricorni光合作用的影响。尽管在两次10小时的有毒物质脉冲之间有4天的恢复期,但光合系统II的有效量子产量(DeltaF/Fm')和总叶绿素浓度表明,多次脉冲的影响大于单次脉冲。在第一次暴露期间,暴露于Irgarol 1051的样本DeltaF/Fm'值降至零,而对照组保持在约0.6的相对单位。第二次暴露期后,处理样本仅恢复到0.4的相对单位。在第一次暴露期间,暴露于铜的样本DeltaF/Fm'值约为0.3的相对单位,尽管这些样本在第二次剂量前有所恢复,但在第二次暴露期后仍低于0.2的相对单位。交替样本也先暴露于一种有毒物质,恢复后再暴露于另一种有毒物质。DeltaF/Fm'值表明,铜暴露后接着Irgarol 1051暴露的毒性大于Irgarol 1051暴露后接着铜暴露的毒性。
Tides and freshwater inflow which influence water movement in estuarine areas govern the exposure-regime of pollutants. In this experiment, we examined the in situ impact of double pulses of copper and the herbicide Irgarol 1051 on the photosynthesis of the seagrass, Zostera capricorni. Despite a 4-day recovery period between the two 10 hr pulses of toxicant, the effective quantum yield of photosystem II (DeltaF/Fm') and total chlorophyll concentrations indicated that multiple-pulses had a greater impact than a single pulse. During the first exposure period, samples exposed to Irgarol 1051 had DeltaF/Fm' values as low as zero while controls remained around 0.6 relative units. After the second exposure period, treated samples recovered to only 0.4 relative units. Samples exposed to copper had DeltaF/Fm' values around 0.3 relative units during the first exposure period and while these samples recovered before the second dose, they remained below 0.2 relative units after the second exposure period. Alternate samples were also exposed to one toxicant, allowed to recover and then exposed to the other toxicant. DeltaF/Fm' values indicated that copper exposure followed by Irgarol 1051 exposure was more toxic than Irgarol 1051 exposure followed by copper exposure.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 相互作用
除草剂Irgarol 1051(2-(叔丁基氨基)-4-环丙氨基)-6-(甲基硫基)-1,3,5-三嗪)和敌草隆(3-(3',4'-二氯苯基)-1,1-二甲基脲)通常被加入到防污漆中以增强对藻类的化合物效果。以往的调查已经确定这些除草剂的环境浓度对非靶标生物,如海草构成威胁。它们的个体毒性已经得到评估,但它们可能会共存并相互作用,可能会增加其毒性并对海草草场构成威胁。研究了Zostera marina L.在海草经过10天单独暴露于每种除草剂后,叶绿素荧光(Fv:Fm)和叶特定生物量比率(代表植物生长)。确定了每种除草剂的EC20,并使用这些混合除草剂来评估它们的交互作用效果。发现Irgarol 1051比敌草隆更具毒性,Fv:Fm降低的最低可观察效果浓度为0.5和1.0 +/- 微克/升,10天的EC50值为1.1和3.2微克/升,分别。当Z. marina暴露于Irgarol 1051和敌草隆时,在1.0和5.0微克/升的浓度下,植物生长显著减少。当Z. marina暴露于混合物时,除草剂通常呈加性或拮抗作用,与单独暴露于每种除草剂的植物相比,在任何浓度下都没有发现光合效率的显著进一步降低。然而,当敌草隆的EC20添加到不同的Irgarol 1051浓度中,以及Irgarol 1051的EC20添加到不同的敌草隆浓度中时,在更早的阶段就注意到了Fv:Fm的显著降低。当与仅暴露于敌草隆的植物相比,暴露于敌草隆加Irgarol 1051 EC20的植物生长显著减少,但仅在较低浓度下。与仅暴露于Irgarol 1051的植物相比,暴露于Irgarol 1051和敌草隆EC20的植物生长没有显著减少。尽管与大多数混合物中的除草剂单独作用相比,添加EC20并没有引起进一步的显著降低,但生长和光合效率的最低可观察显著效果浓度降至0.5微克/升,对于两种除草剂都是如此。已经发现Irgarol 1051和敌草隆的浓度可以一起超过0.5微克/升,这表明海草可能因此经历光合效率和生长的降低。
The herbicides Irgarol 1051 (2-(tert-butylamino)-4-cyclopropylamino)-6-(methylthio)-1,3,5-triazine) and Diuron (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) are commonly incorporated into antifouling paints to boost the efficacy of the compound towards algae. Previous investigations have identified environmental concentrations of these herbicides as being a threat to non-target organisms, such as seagrasses. Their individual toxicity has been assessed, but they can co-occur and interact, potentially increasing their toxicity and the threat posed to seagrass meadows. Chlorophyll fluorescence (Fv:Fm) and leaf specific biomass ratio (representing plant growth) were examined in Zostera marina L. after a 10-day exposure to the individual herbicides. The EC20 for each herbicide was determined and these then used in herbicide mixtures to assess their interactive effects. Irgarol 1051 was found to be more toxic than Diuron with lowest observable effect concentrations for Fv:Fm reduction of 0.5 and 1.0 +/- ug/L and 10-day EC50 values of 1.1 and 3.2 ug/L, respectively. Plants exposed to Irgarol 1051 and Diuron showed a significant reduction in growth at concentrations of 1.0 and 5.0 ug/L, respectively. When Z. marina was exposed to mixtures, the herbicides commonly interacted additively or antagonistically, and no significant further reduction in photosynthetic efficiency was found at any concentration when compared to plants exposed to the individual herbicides. However, on addition of the Diuron EC20 to varying Irgarol 1051 concentrations and the Irgarol 1051 EC20 to varying Diuron concentrations, significant reductions in Fv:Fm were noted at an earlier stage. The growth of plants exposed to Diuron plus the Irgarol 1051 EC20 were significantly reduced when compared to plants exposed to Diuron alone, but only at the lower concentrations. Growth of plants exposed to Irgarol 1051 and the Diuron EC20 showed no significant reduction when compared to the growth of plants exposed to Irgarol 1051 alone. Despite the addition of the EC20 not eliciting a further significant reduction when compared to the herbicides acting alone for most of the mixtures, the lowest observable significant effect concentration for growth and photosynthetic efficiency decreased to 0.5 ug/L for both herbicides. Irgarol 1051 and Diuron have been shown to occur together in concentrations above 0.5 ug/L, suggesting that seagrasses may be experiencing reduced photosynthetic efficiency and growth as a result.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    9
  • 危险品标志:
    Xi,N
  • 安全说明:
    S36/37,S60,S61
  • 危险类别码:
    R50/53,R43
  • WGK Germany:
    2
  • 海关编码:
    2933699090
  • 危险品运输编号:
    UN 3077
  • 包装等级:
    III
  • 危险类别:
    9
  • 危险性防范说明:
    P501,P273,P260,P270,P264,P280,P391,P314,P337+P313,P305+P351+P338,P301+P312+P330
  • 危险性描述:
    H302,H319,H372,H410
  • 储存条件:
    存储条件:室温、密封、干燥

SDS

SDS:611d538c25c9276ff41c3ed6a330fc01
查看
2-(叔丁氨基)-4-(环丙氨基)-6-(甲硫基)-1,3,5-三嗪 修改号码:4

模块 1. 化学品
产品名称: 2-(tert-Butylamino)-4-(cyclopropylamino)-6-(methylthio)-1,3,5-triazine
修改号码: 4

模块 2. 危险性概述
GHS分类
物理性危害 未分类
健康危害
皮肤敏感性 第1级
环境危害
急性水生毒性 第1级
慢性水生毒性 第1级
GHS标签元素
图标或危害标志
信号词 警告
危险描述 可能导致皮肤过敏性反应
对水生生物有极毒性
长期影响对水生生物有极毒性
防范说明
[预防] 避免吸入。
避免释放到环境中。
受污染的工作服不允许带出工作场所。
穿戴防护手套/护目镜/防护面具。
[急救措施] 皮肤接触:用大量肥皂和水轻轻洗。
若皮肤刺激或发生皮疹:求医/就诊。
被污染的衣物清洗后方可重新使用。
收集溢出物。
[废弃处置] 根据当地政府规定把物品/容器交与工业废弃处理机构。

模块 3. 成分/组成信息
单一物质/混和物 单一物质
化学名(中文名): 2-(叔丁氨基)-4-(环丙氨基)-6-(甲硫基)-1,3,5-三嗪
修改号码:4
三嗪

模块 3. 成分/组成信息
百分比: >98.0%(T)
CAS编码: 28159-98-0
分子式: C11H19N5S

模块 4. 急救措施
吸入: 将受害者移到新鲜空气处,保持呼吸通畅,休息。若感不适请求医/就诊。
皮肤接触: 立即去除/脱掉所有被污染的衣物。用大量肥皂和水轻轻洗。
若皮肤刺激或发生皮疹:求医/就诊。
眼睛接触: 用水小心清洗几分钟。如果方便,易操作,摘除隐形眼镜。继续清洗。
如果眼睛刺激:求医/就诊。
食入: 若感不适,求医/就诊。漱口。
紧急救助者的防护: 救援者需要穿戴个人防护用品,比如橡胶手套和气密性护目镜。

模块 5. 消防措施
合适的灭火剂: 干粉,泡沫,雾状水,二氧化碳
特殊危险性: 小心,燃烧或高温下可能分解产生毒烟。
特定方法: 从上风处灭火,根据周围环境选择合适的灭火方法。
非相关人员应该撤离至安全地方。
周围一旦着火:如果安全,移去可移动容器。
消防员的特殊防护用具: 灭火时,一定要穿戴个人防护用品。

模块 6. 泄漏应急处理
个人防护措施,防护用具, 使用个人防护用品。远离溢出物/泄露处并处在上风处。
紧急措施: 泄露区应该用安全带等圈起来,控制非相关人员进入。
环保措施: 小心,切勿排入河流等。因为考虑对环境有负面影响。
控制和清洗的方法和材料: 清扫收集粉尘,封入密闭容器。注意切勿分散。附着物或收集物应该立即根据合适的
法律法规处置。

模块 7. 操作处置与储存
处理
技术措施: 在通风良好处进行处理。穿戴合适的防护用具。防止粉尘扩散。处理后彻底清洗双手
和脸。
注意事项: 如果粉尘或浮质产生,使用局部排气。
操作处置注意事项: 避免接触皮肤、眼睛和衣物。
贮存
储存条件: 保持容器密闭。存放于凉爽、阴暗处。
远离不相容的材料比如氧化剂存放。
包装材料: 依据法律。

模块 8. 接触控制和个体防护
工程控制: 尽可能安装封闭体系或局部排风系统,操作人员切勿直接接触。同时安装淋浴器和洗
眼器。
个人防护用品
呼吸系统防护: 防尘面具。依据当地和政府法规。
手部防护: 防护手套。
眼睛防护: 安全防护镜。如果情况需要,佩戴面具。
皮肤和身体防护: 防护服。如果情况需要,穿戴防护靴。
修改号码:4
三嗪

模块 9. 理化特性
固体
外形(20°C):
外观: 晶体-粉末
颜色: 白色类白色
气味: 无资料
pH: 无数据资料
熔点: 128°C
沸点/沸程 无资料
闪点: 无资料
爆炸特性
爆炸下限: 无资料
爆炸上限: 无资料
密度: 无资料
溶解度: 溶于: 热甲醇
不溶于: 水
log水分配系数 = 3.9

模块 10. 稳定性和反应性
化学稳定性: 一般情况下稳定。
危险反应的可能性: 未报道特殊反应性。
须避免接触的物质 氧化剂, 强酸, 强碱
危险的分解产物: 一氧化碳, 二氧化碳, 氮氧化物 (NOx), 硫氧化物

模块 11. 毒理学信息
急性毒性: 无资料
对皮肤腐蚀或刺激: 无资料
对眼睛严重损害或刺激: 无资料
生殖细胞变异原性: 无资料
致癌性:
IARC = 无资料
NTP = 无资料
生殖毒性: 无资料
RTECS 号码: XY5850675

模块 12. 生态学信息
生态毒性:
鱼类: 无资料
甲壳类: 无资料
藻类: 无资料
残留性 / 降解性: 无资料
潜在生物累积 (BCF): 160 - 250
土壤中移动性
log水分配系数: 3.9
土壤吸收系数 (Koc): 无资料
亨利定律 无资料
constant(PaM3/mol):

模块 13. 废弃处置
如果可能,回收处理。请咨询当地管理部门。建议在可燃溶剂中溶解混合,在装有后燃和洗涤装置的化学焚烧炉中
焚烧。废弃处置时请遵守国家、地区和当地的所有法规。
修改号码:4
三嗪

模块 14. 运输信息
联合国分类: 第9类 杂类
UN编号: 3077
正式运输名称: 环境有害物质, 固体, 不另作详细说明
包装等级: III
海洋污染物: Y

模块 15. 法规信息
《危险化学品安全管理条例》(2002年1月26日国务院发布,2011年2月16日修订): 针对危险化学品的安全使用、
生产、储存、运输、装卸等方面均作了相应的规定。


模块16 - 其他信息
N/A

制备方法与用途

理化性质

Cybutryne 是由 Ciba-Geigy(现属 Syngenta AG)开发的一种海水除藻剂。纯品为白色结晶性粉末,熔点在 130~133℃之间。它是一种非常强的光系统Ⅱ(PSI)抑制剂。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-叔丁氨基-4-环丙氨基-6-甲硫基-s-三嗪双氧水dioxide titanium 作用下, 以 为溶剂, 生成 Deethylterbutryne
    参考文献:
    名称:
    Integrated photocatalytic-biological treatment of triazine-containing pollutants
    摘要:
    The degradation of triazine-containing pollutants including simazine, Irgarol (R) 1051 and Reactive Brilliant Red K-2G (K-2G) by photocatalytic treatment was investigated. The effects of titanium dioxide (TiO2) concentration, initial pH of reaction mixture, irradiation time and ultraviolet (UV) intensity on photo-catalytic treatment efficiency were examined. Complete decolorization of K-2G was observed at 60 min photodegradation while only 15 min were required to completely degrade simazine and Irgarol (R) 1051 under respective optimized conditions. High-performance liquid chromatography (HPLC), gas chromatography/mass spectrometry (GC/MS) and ion chromatography (IC) were employed to identify the photocatalytic degradation intermediates and products. Dealkylated intermediates of simazine, deisopropylatrazine and deethyldeisopropylatrazine, and Irgarol (R) 1051 were detected by GC/MS in the initial phase of degradation. Complete mineralization could not be achieved for all triazine-containing pollutants even after prolonged (>72 h) UV irradiation due to the presence of a photocatalysis-resistant end product, cyanuric acid (CA). The toxicities of different compounds before and after photocatalytic treatment were also monitored by three bioassays. To further treat the photocatalysis-resistant end product, a CA-degrading bacterium was isolated from polluted marine sediment and further identified as Kiebsiella pneumoniae by comparing the substrate utilization pattern (Biologna (TM) microplate), fatty acid composition and 165 rRNA gene sequencing. K. pneumoniae efficiently utilized CA from 1 to 2000 mg/L as a good nitrogen source and complete mineralization of CA was observed within 24 h of incubation. This study demonstrates that the biodegradability of triazine-containing pollutants was significantly improved by the photocatalytic pre-treatment, and this proposed photocatalytic-biological integrated system can effectively treat various classes of triazine-containing pollutants. (C) 2019 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.chemosphere.2019.01.127
  • 作为产物:
    描述:
    2-(叔-丁基氨基)-4-氯-6-环丙基氨基-1,3,5-三嗪碳酸二甲酯potassium tert-butylate 、 palladium diacetate 、 三苯基膦potassium thioacetate 作用下, 以 二甲基亚砜 为溶剂, 以93%的产率得到2-叔丁氨基-4-环丙氨基-6-甲硫基-s-三嗪
    参考文献:
    名称:
    钯催化的硫代甲基化通过三组分交叉偶联策略
    摘要:
    在本报告中,设计了掩蔽的无机硫和碳酸二甲酯的组合,以实现芳基氯的硫代甲基化交叉偶联。值得注意的是,这种强有力的策略实现了带有未保护核糖的核苷的硫代甲基化,具有后期偶联作用的含氯化物的药物以及具有多个杂原子和空间位阻的除草剂。而且,该方案实际上适用于具有较低催化负载和较高产率的多克级合成。
    DOI:
    10.1021/acs.orglett.8b02677
点击查看最新优质反应信息

文献信息

  • [EN] MICROBIOCIDAL OXADIAZOLE DERIVATIVES<br/>[FR] DÉRIVÉS D'OXADIAZOLE MICROBIOCIDES
    申请人:SYNGENTA PARTICIPATIONS AG
    公开号:WO2017157962A1
    公开(公告)日:2017-09-21
    Compounds of the formula (I) wherein the substituents are as defined in claim 1, useful as a pesticides, especially fungicides.
    式(I)的化合物,其中取代基如权利要求1所定义,作为杀虫剂特别是杀菌剂有用。
  • [EN] INSECTICIDAL TRIAZINONE DERIVATIVES<br/>[FR] DÉRIVÉS DE TRIAZINONE INSECTICIDES
    申请人:SYNGENTA PARTICIPATIONS AG
    公开号:WO2013079350A1
    公开(公告)日:2013-06-06
    Compounds of the formula (I) or (I'), wherein the substituents are as defined in claim 1, are useful as pesticides.
    式(I)或(I')的化合物,其中取代基如权利要求1所定义的那样,可用作杀虫剂。
  • Novel insecticides
    申请人:Syngenta Participations AG
    公开号:EP2540718A1
    公开(公告)日:2013-01-02
    Compounds of formula I wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts and all stereoisomers and tautomeric forms of the compounds of formula I can be used as insecticides and can be prepared in a manner known per se.
    式I的化合物 其中取代基如权利要求1所定义,并且式I化合物的农药可接受盐以及所有立体异构体和互变异构形式可用作杀虫剂,并且可以按照已知的方法制备。
  • Molecules having pesticidal utility, and intermediates, compositions, and processes, related thereto
    申请人:Dow AgroSciences LLC
    公开号:US20180279612A1
    公开(公告)日:2018-10-04
    This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
    这份披露涉及具有对节肢动物门、软体动物门和线虫门害虫具有杀虫效用的分子领域,用于生产此类分子的过程,用于此类过程的中间体,含有此类分子的杀虫组合物,以及使用此类杀虫组合物对抗此类害虫的过程。这些杀虫组合物可以用作螨虫剂、杀虫剂、螨虫剂、软体动物杀虫剂和线虫杀虫剂。本文件披露了具有以下式(“式一”)的分子。
  • [EN] MOLECULES HAVING PESTICIDAL UTILITY, AND INTERMEDIATES, COMPOSITIONS, AND PROCESSES, RELATED THERETO<br/>[FR] MOLÉCULES PRÉSENTANT UNE UTILITÉ EN TANT QUE PESTICIDE, ET LEURS INTERMÉDIAIRES, COMPOSITIONS ET PROCÉDÉS
    申请人:DOW AGROSCIENCES LLC
    公开号:WO2017040194A1
    公开(公告)日:2017-03-09
    This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions aga inst such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula ("Formula One").
    这份披露涉及具有对节肢动物门、软体动物门和线虫门害虫有用的分子领域,用于生产这种分子的过程,用于这种过程的中间体,含有这种分子的杀虫剂组合物,以及使用这种杀虫剂组合物对抗这些害虫的过程。这些杀虫剂组合物可以用作螨虫剂、杀虫剂、螨虫剂、软体动物杀虫剂和线虫杀虫剂。本文件披露了具有以下化学式(“化学式一”)的分子。
查看更多