摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6,7-Dichloro-2,3-dimethoxy-5-[1-(triazol-1-yl)propyl]quinoxaline | 349151-87-7

中文名称
——
中文别名
——
英文名称
6,7-Dichloro-2,3-dimethoxy-5-[1-(triazol-1-yl)propyl]quinoxaline
英文别名
——
6,7-Dichloro-2,3-dimethoxy-5-[1-(triazol-1-yl)propyl]quinoxaline化学式
CAS
349151-87-7
化学式
C15H15Cl2N5O2
mdl
——
分子量
368.222
InChiKey
ROMORTYICNBSFF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    24
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    75
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    6,7-Dichloro-2,3-dimethoxy-5-[1-(triazol-1-yl)propyl]quinoxaline盐酸 作用下, 以 1,4-二氧六环 为溶剂, 以57%的产率得到6,7-Dichloro-5-[1-(triazol-1-yl)propyl]-1,4-dihydroquinoxaline-2,3-dione
    参考文献:
    名称:
    Structure−Activity Relationships of 1,4-Dihydro-(1H,4H)-quinoxaline-2,3-diones as N-Methyl-d-aspartate (Glycine Site) Receptor Antagonists. 1. Heterocyclic Substituted 5-Alkyl Derivatives
    摘要:
    A series of 6,7-dichloro-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-diones (1-17) were prepared in which the 5-position substituent was a heterocyclylmethyl or 1-(heterocyclyl)-1-propyl group. Structure-activity relationships were evaluated where binding affinity for the glycine site of the N-methyl-D-aspartate (NMDA) receptor was measured using the specific radioligand [H-3]- L-689,560, and functional antagonism was demonstrated by inhibition of NMDA-induced depolarizations of rat cortical wedges. The ability to prevent NMDA-induced hyperlocomotion in mice in vivo was measured for selected compounds. Binding affinity increased significantly if the heterocyclic group, e.g. 1,2,3-triazol-1-yl could participate in accepting a hydrogen bond from the receptor. It was difficult to obtain compounds with adequate aqueous solubility and strategies to improve it were investigated. The most potent compound in this series, 6,7-dichloro-5-[1-( 1,2,4-triazol-4-yl)propyl]-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-dione (17) (binding IC50 = 2.6 nM; cortical wedge EC50 = 90 nM), inhibited NMDA-induced hyperlocomotion in mice (6/9 protected at 20 mg/kg iv). Pharmacokinetic parameters, including extent of brain penetration, for 11 and 17 are reported.
    DOI:
    10.1021/jm001124p
  • 作为产物:
    参考文献:
    名称:
    Structure−Activity Relationships of 1,4-Dihydro-(1H,4H)-quinoxaline-2,3-diones as N-Methyl-d-aspartate (Glycine Site) Receptor Antagonists. 1. Heterocyclic Substituted 5-Alkyl Derivatives
    摘要:
    A series of 6,7-dichloro-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-diones (1-17) were prepared in which the 5-position substituent was a heterocyclylmethyl or 1-(heterocyclyl)-1-propyl group. Structure-activity relationships were evaluated where binding affinity for the glycine site of the N-methyl-D-aspartate (NMDA) receptor was measured using the specific radioligand [H-3]- L-689,560, and functional antagonism was demonstrated by inhibition of NMDA-induced depolarizations of rat cortical wedges. The ability to prevent NMDA-induced hyperlocomotion in mice in vivo was measured for selected compounds. Binding affinity increased significantly if the heterocyclic group, e.g. 1,2,3-triazol-1-yl could participate in accepting a hydrogen bond from the receptor. It was difficult to obtain compounds with adequate aqueous solubility and strategies to improve it were investigated. The most potent compound in this series, 6,7-dichloro-5-[1-( 1,2,4-triazol-4-yl)propyl]-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-dione (17) (binding IC50 = 2.6 nM; cortical wedge EC50 = 90 nM), inhibited NMDA-induced hyperlocomotion in mice (6/9 protected at 20 mg/kg iv). Pharmacokinetic parameters, including extent of brain penetration, for 11 and 17 are reported.
    DOI:
    10.1021/jm001124p
点击查看最新优质反应信息

文献信息

  • Structure−Activity Relationships of 1,4-Dihydro-(1H,4H)-quinoxaline-2,3-diones as <i>N</i>-Methyl-<scp>d</scp>-aspartate (Glycine Site) Receptor Antagonists. 1. Heterocyclic Substituted 5-Alkyl Derivatives
    作者:M. Jonathan Fray、David J. Bull、Christopher L. Carr、Elisabeth C. L. Gautier、Charles E. Mowbray、Alan Stobie
    DOI:10.1021/jm001124p
    日期:2001.6.1
    A series of 6,7-dichloro-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-diones (1-17) were prepared in which the 5-position substituent was a heterocyclylmethyl or 1-(heterocyclyl)-1-propyl group. Structure-activity relationships were evaluated where binding affinity for the glycine site of the N-methyl-D-aspartate (NMDA) receptor was measured using the specific radioligand [H-3]- L-689,560, and functional antagonism was demonstrated by inhibition of NMDA-induced depolarizations of rat cortical wedges. The ability to prevent NMDA-induced hyperlocomotion in mice in vivo was measured for selected compounds. Binding affinity increased significantly if the heterocyclic group, e.g. 1,2,3-triazol-1-yl could participate in accepting a hydrogen bond from the receptor. It was difficult to obtain compounds with adequate aqueous solubility and strategies to improve it were investigated. The most potent compound in this series, 6,7-dichloro-5-[1-( 1,2,4-triazol-4-yl)propyl]-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-dione (17) (binding IC50 = 2.6 nM; cortical wedge EC50 = 90 nM), inhibited NMDA-induced hyperlocomotion in mice (6/9 protected at 20 mg/kg iv). Pharmacokinetic parameters, including extent of brain penetration, for 11 and 17 are reported.
查看更多