Discovery and SAR study of piperidine-based derivatives as novel influenza virus inhibitors
作者:Guoxin Wang、Longjian Chen、Tongmei Xian、Yujie Liang、Xintao Zhang、Zhen Yang、Ming Luo
DOI:10.1039/c4ob01079e
日期:——
A series of piperidine-based derivatives were identified as novel and potent inhibitors of the influenza virus through structural modification of a compound that was selected from a high-throughput screen. Various analogues were synthesized and confirmed as inhibitors. The structure–activity relationship (SAR) studies suggested that the ether linkage between the quinoline and piperidine is critical for the inhibitory activity. The optimized compound tert-butyl 4-(quinolin-4-yloxy)piperidine-1-carboxylate 11e had an excellent inhibitory activity against influenza virus infection from a variety of influenza virus strains, with EC50 values as low as 0.05 μM. The selectivity index value (SI = MLD50/EC50) of 11e is over 160 000 based on cytotoxicity, measured by MTT assays of three cell lines. We carried out a time-of-addition experiment to delineate the mechanism of inhibition. The result indicates that 11e interferes with the early to middle stage of influenza virus replication.
一系列基于哌啶的衍生物被鉴定为新型的、强效的流感病毒抑制剂。这些衍生物是通过对一种从高通量筛选中选出的化合物进行结构修饰得到的。合成并确认了各种类似物作为抑制剂。构效关系(SAR)研究表明,喹啉与哌啶之间的醚键对于抑制活性至关重要。优化的化合物叔丁基 4-(喹啉-4-基氧)哌啶-1-羧酸酯 11e 对多种流感病毒株的流感病毒感染具有出色的抑制活性,EC50 值低至 0.05 μM。根据三种细胞系的 MTT 试验测得的细胞毒性,11e 的选择指数值(SI = MLD50/EC50)超过 160,000。我们进行了一项添加时间实验来阐明抑制机制。结果表明,11e干扰了流感病毒复制的早期到中期阶段。