摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(5E)-5-亚苄基-2-硫代-咪唑烷-4-酮 | 583-46-0

中文名称
(5E)-5-亚苄基-2-硫代-咪唑烷-4-酮
中文别名
——
英文名称
5-benzylidene-2-thiohydantoin
英文别名
5-benzylidene-2-thioxoimidazolidin-4-one;5-Benzyliden-2-thio-hydantoin;Benzalthiohydantoin;5-benzylidene-2-sulfanylideneimidazolidin-4-one
(5E)-5-亚苄基-2-硫代-咪唑烷-4-酮化学式
CAS
583-46-0
化学式
C10H8N2OS
mdl
——
分子量
204.252
InChiKey
YXMBDTHHYFCMKP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    14
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    73.2
  • 氢给体数:
    2
  • 氢受体数:
    2

SDS

SDS:92653b84ef095b543909f1c757b1748d
查看
1.1 产品标识符
: 5-Benzylidene-2-thiohydantoin
产品名称
1.2 鉴别的其他方法
无数据资料
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅供科研用途,不作为药物、家庭备用药或其它用途。

模块 2. 危险性概述
2.1 GHS分类
眼刺激 (类别2A)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 警告
危险申明
H319 造成严重眼刺激。
警告申明
预防
P264 操作后彻底清洁皮肤。
P280 穿戴防护手套/ 眼保护罩/ 面部保护罩。
措施
P305 + P351 + P338 如与眼睛接触,用水缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P337 + P313 如仍觉眼睛刺激:求医/就诊。 如仍觉眼睛刺激:求医/就诊.
2.3 其它危害物 - 无

模块 3. 成分/组成信息
3.1 物 质
: C10H8N2OS
分子式
: 204.25 g/mol
分子量
组分 浓度或浓度范围
5-Benzylidene-2-thiohydantoin
-
CAS 号 583-46-0

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 出示此安全技术说明书给到现场的医生看。
吸入
如果吸入,请将患者移到新鲜空气处。 如果停止了呼吸,给于人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 请教医生。
眼睛接触
用大量水彻底冲洗至少15分钟并请教医生。
食入
切勿给失去知觉者从嘴里喂食任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,耐醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 氮氧化物, 硫氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 人员的预防,防护设备和紧急处理程序
使用个人防护设备。 防止粉尘的生成。 防止吸入蒸汽、气雾或气体。 保证充分的通风。 避免吸入粉尘。
6.2 环境保护措施
不要让产物进入下水道。
6.3 抑制和清除溢出物的方法和材料
收集、处理泄漏物,不要产生灰尘。 扫掉和铲掉。 存放进适当的闭口容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 防止粉尘和气溶胶生成。
在有粉尘生成的地方,提供合适的排风设备。一般性的防火保护措施。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 容器保持紧闭,储存在干燥通风处。
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
按照良好工业和安全规范操作。 休息前和工作结束时洗手。
个体防护设备
眼/面保护
带有防护边罩的安全眼镜符合 EN166要求请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟)
检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
防渗透的衣服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和含量来选择。
呼吸系统防护
如须暴露于有害环境中,请使用P95型(美国)或P1型(欧盟 英国
143)防微粒呼吸器。如需更高级别防护,请使用OV/AG/P99型(美国)或ABEK-P2型 (欧盟 英国 143)
防毒罐。
呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
无数据资料
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
无数据资料
f) 起始沸点和沸程
无数据资料
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸汽压
无数据资料
l) 蒸汽密度
无数据资料
m) 相对密度
无数据资料
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
辛醇--水的分配系数的对数值: 1.675
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应的可能性
无数据资料
10.4 应避免的条件
无数据资料
10.5 不兼容的材料
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
半数致死剂量 (LD50) 经口 - 老鼠 - 960 mg/kg
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
无数据资料
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 可能引起呼吸道刺激。
摄入 如服入是有害的。
皮肤 如果通过皮肤吸收可能是有害的。 可能引起皮肤刺激。
眼睛 造成严重眼刺激。
附加说明
化学物质毒性作用登记: MT9125000

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久存留性和降解性
无数据资料
12.3 潜在的生物蓄积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不利的影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和未回收的溶液交给处理公司。 联系专业的拥有废弃物处理执照的机构来处理此物质。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
作为未用过的产品弃置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.2 联合国(UN)规定的名称
欧洲陆运危规: 非危险货物
国际海运危规: 非危险货物
国际空运危规: 非危险货物
14.3 运输危险类别
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.4 包裹组
欧洲陆运危规: - 国际海运危规: - 国际空运危规: -
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 海运污染物: 否 国际空运危规: 否
14.6 对使用者的特别提醒
无数据资料

模块 16. 其他信息
进一步信息
版权所有:2012 Co. LLC. 公司。许可无限制纸张拷贝,仅限于内部使用。
上述信息视为正确,但不包含所有的信息,仅作为指引使用。本文件中的信息是基于我们目前所知,就正
确的安全提示来说适用于本品。该信息不代表对此产品性质的保证。
参见发票或包装条的反面。


模块 15 - 法规信息
N/A

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

点击查看最新优质反应信息

文献信息

  • Systematic Evaluation of the Metabolism and Toxicity of Thiazolidinone and Imidazolidinone Heterocycles
    作者:Shi Qing Tang、Yong Yang Irvin Lee、David Sheela Packiaraj、Han Kiat Ho、Christina Li Lin Chai
    DOI:10.1021/acs.chemrestox.5b00247
    日期:2015.10.19
    The thiazolidine and imidazolidine heterocyclic scaffolds, i.e., the rhodanines, 2,4-thiazolidinediones, 2-thiohydantoins, and hydantoins have been the subject of debate on their suitability as starting points in drug discovery. This attention arose from the wide variety of biological activities exhibited by these scaffolds and their frequent occurrence as hits in screening campaigns. Studies have been conducted to evaluate their value in drug discovery in terms of their biological activity, chemical reactivity, aggregation-based promiscuity, and electronic properties. However, the metabolic profiles and toxicities have not been systematically assessed. In this study, a series of five-membered multiheterocyclic (FMMH) compounds were selected for a systematic evaluation of their metabolic profiles and toxicities on TAMH cells, a metabolically competent rodent liver cell line and HepG2 cells, a model of human hepatocytes. Our studies showed that generally the rhodanines are the most toxic, followed by the thiazolidinediones, thiohydantoins, and hydantoins. However, not all compounds within the family of heterocycles were toxic. In terms of metabolic stability, 5-substituted rhodanines and 5-benzylidene thiohydantoins were found to have short half-lives in the presence of human liver microsomes (t1/2 < 30 min) suggesting that the presence of the endocyclic sulfur and thiocarbonyl group or a combination of C5 benzylidene substituent and thiocarbonyl group in these heterocycles could be recognition motifs for P450 metabolism. However, the stability of these compounds could be improved by installing hydrophilic functional groups. Therefore, the toxicities and metabolic profiles of FMMH derivatives will ultimately depend on the overall chemical entity, and a blanket statement on the effect of the FMMH scaffold on toxicity or metabolic stability cannot and should not be made.
    噻唑烷和咪唑烷杂环骨架,即罗丹宁、2,4-噻唑烷二酮、2-硫代海因和海因,其作为药物发现的起始点的适宜性一直是争论的主题。这种关注源于这些骨架所展现的多样化的生物活性和它们在筛选活动中频繁出现作为命中物。已经进行了研究来评估它们在药物发现中的价值,包括它们的生物活性、化学反应性、基于聚集的杂乱性以及电子性质。然而,它们的代谢轮廓和毒性尚未被系统地评估。在这项研究中,选择了一系列五元多杂环(FMMH)化合物,对它们在TAMH细胞(一种代谢能力健全的啮齿动物肝细胞系)和HepG2细胞(一种人肝细胞模型)上的代谢轮廓和毒性进行了系统评估。我们的研究表明,一般来说,罗丹宁的毒性最大,其次是噻唑烷二酮、硫代海因和海因。然而,并非所有杂环家族中的化合物都具有毒性。在代谢稳定性方面,发现5-取代的罗丹宁和5-苄叉基硫代海因在人肝微粒体存在下具有较短的半衰期(t1/2 < 30分钟),这表明在这些杂环中的环内硫和硫羰基或5位苄叉基取代和硫羰基的组合可能是P450代谢的识别基序。然而,通过引入亲水性功能基团可以提高这些化合物的稳定性。因此,FMMH衍生物的毒性和代谢轮廓最终将取决于整体化学实体,关于FMMH骨架对毒性或代谢稳定性的影响不能也不应该做出笼统的陈述。
  • Design and Synthesis of Novel Phenylpiperazine Derivatives as Potential Anticonvulsant Agents
    作者:Monica M. W. Habib、Mohamed A. O. Abdelfattah、Ashraf H. Abadi
    DOI:10.1002/ardp.201500272
    日期:2015.12
    Eighteen new 5‐benzylidene‐3‐(4‐arylpiperazin‐1‐ylmethyl)‐2‐thioxo‐imidazolidin‐4‐ones were designed as hybrid structures from previously reported anticonvulsant compounds, synthesized and tested for anticonvulsant activity. Initial anticonvulsant screening was performed using the strychnine (2 mg/kg IP) potent generalized‐induced seizure and pentylenetetrazole (PTZ) (60 mg/kg IP) acute clonic‐induced
    十八种新的 5-亚苄基-3-(4-芳基哌嗪-1-基甲基)-2-硫代-咪唑啉-4-酮被设计为先前报道的抗惊厥化合物的杂化结构,合成并测试抗惊厥活性。使用马钱子碱 (2 mg/kg IP) 强效全身诱发癫痫和戊四唑 (PTZ) (60 mg/kg IP) 小鼠急性阵挛诱发惊厥筛选进行初始抗惊厥筛选。发现所有分子对至少一种癫痫模型有效,化合物 10、13、15、17 和 18 对两种类型的癫痫发作都有活性。结果证明,化合物 13 是士的宁模型中最活跃的候选物,平均存活时间为 6 分钟,接近阳性对照苯妥英的存活时间,而化合物 8 对诱导的 PTZ 癫痫发作具有 100% 的保护作用,类似于阳性对照苯巴比妥的保护作用。讨论了抗惊厥活性的初步 SAR 研究。
  • (S)-5-Benzyl- and 5-benzylidene-imidazo-4-one derivatives synthesized and studied for an understanding of their thermal reactivity
    作者:A. J. Pepino、W. J. Peláez、M. S. Faillace、N. M. Ceballos、E. L. Moyano、G. A. Argüello
    DOI:10.1039/c4ra11046c
    日期:——

    Static and flash vacuum pyrolysis were used to get insight into the mechanisms of decomposition of 3-(2-chloroethyl)imidazolidine-2,4-dione and 2,3-dihydroimidazo[2,1-b]thiazol-5(6H)-one derivatives.

    使用静态和闪光真空热解法,以深入了解3-(2-氯乙基)咪唑啉-2,4-二酮和2,3-二氢咪唑并[2,1-b]噻唑-5(6H)-酮衍生物分解机制。
  • Expedient Base-Mediated Desulfitative Dimethylamination, Oxidation, or Etherification of 2-(Methylsulfanyl)-3,5-dihydro-4H-imidazol-4-one Scaffolds
    作者:Prem Chauhan、Shahnawaz Khan、Vikas Tyagi、Rohit Mahar、Vikas Bajpai、Brijesh Kumar
    DOI:10.1055/s-0033-1338499
    日期:——
    Williamson ether synthesis, but the available transition-metal-catalyzed methods require highly toxic reagents (such as dimethyl sulfate or methyl halides) and expensive metal catalysts, and they entail harsh reaction conditions and complex workups. A simple and efficient method is described for base-mediated­ desulfitative dimethylamination, oxidation, or etherification at the C2-position of the 2-(methylsulfanyl)-3
    摘要 通常通过在高温和高压下用低沸点二甲胺处理卤代衍生物,将二甲基氨基官能团引入3,5-二氢-4 H-咪唑-4-酮骨架上。相应的脂肪族醚通常通过威廉姆森醚合成法制备,但是可用的过渡金属催化方法需要剧毒试剂(例如硫酸二甲酯或甲基卤化物)和昂贵的金属催化剂,并且它们需要苛刻的反应条件和复杂的后处理。描述了一种简单有效的方法,使用碳酸钾在2-(甲基硫烷基)-3,5-二氢-4 H-咪唑-4-酮骨架的C2-位进行碱介导的脱硫二甲基氨基化,氧化或醚化和含水氮,N-二甲基甲酰胺或脂族醇。 通常通过在高温和高压下用低沸点二甲胺处理卤代衍生物,将二甲基氨基官能团引入3,5-二氢-4 H-咪唑-4-酮骨架上。相应的脂肪族醚通常通过威廉姆森醚合成法制备,但是可用的过渡金属催化方法需要剧毒试剂(例如硫酸二甲酯或甲基卤化物)和昂贵的金属催化剂,并且它们需要苛刻的反应条件和复杂的后处理。描述了一种简单有效的方法,使用碳酸钾在2-(甲基硫烷基)-3
  • Bioisosteric modification of known fucosidase inhibitors to discover a novel inhibitor of α-<scp>l</scp>-fucosidase
    作者:Chandramohan Bathula、Shreemoyee Ghosh、Santanu Hati、Sayantan Tripathy、Shailja Singh、Saikat Chakrabarti、Subhabrata Sen
    DOI:10.1039/c6ra24939f
    日期:——
    on furopyridinedione, thiohydantoin and hydantoin, followed by their in vitro screening against α-L-fucosidase (bovine kidney origin) generated a potent inhibitor (compound 4e) with IC50 of ∼0.7 μM. Compound 4e possessed no cytotoxic properties when tested against healthy mammalian COS-1 cells. Reaction kinetics study suggested it to be a mixed inhibitor. Finally compounds 4a, b, e and f, bearing the
    已知岩藻糖苷酶抑制剂A和B的生物立体异构修饰产生了三种新类型的分子,分别属于呋喃吡啶二酮,硫代乙内酰脲和乙内酰脲化学分型的4b,5c和6a,它们可能与α- L-岩藻糖苷酶(牛肾来源)结合。分子对接揭示并比较了4b,5c和6a与A和B之间的假定结合相互作用与α- L同源模型的活性位点-岩藻糖苷酶。基于此初步研究,设计和合成了基于呋喃吡啶二酮,硫代乙内酰脲和乙内酰脲的小分子文库,然后对其体外筛选抗α- L-岩藻糖苷酶(牛肾来源)产生了一种有效的IC抑制剂(化合物4e)约0.7μM中的50。当针对健康的哺乳动物COS-1细胞进行测试时,化合物4e不具有细胞毒性。反应动力学研究表明它是一种混合抑制剂。最后化合物4a,b,e和f带有呋喃并吡啶二酮基序的α,也显示出对MCF 7乳腺癌细胞增殖的实质性抑制。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物