摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

双(11-羟基十一烷基)二硫化物 | 119438-02-7

中文名称
双(11-羟基十一烷基)二硫化物
中文别名
——
英文名称
11-hydroxyundecyldisulfide
英文别名
bis(11-hydroxyundecyl) disulfide;11,11'-disulfanediylbis(undecan-1-ol);11-(11-hydroxyundecyldisulfanyl)undecan-1-ol
双(11-羟基十一烷基)二硫化物化学式
CAS
119438-02-7
化学式
C22H46O2S2
mdl
——
分子量
406.738
InChiKey
QDDVALINJKRSDC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    80-84 °C

计算性质

  • 辛醇/水分配系数(LogP):
    7.8
  • 重原子数:
    26
  • 可旋转键数:
    23
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    91.1
  • 氢给体数:
    2
  • 氢受体数:
    4

安全信息

  • 危险品标志:
    Xi
  • 安全说明:
    S26
  • 危险类别码:
    R36/37/38
  • 危险标志:
    GHS07
  • 危险性描述:
    H315,H319,H335
  • 危险性防范说明:
    P261,P305 + P351 + P338
  • 储存条件:
    存储条件:2-8℃,密封保存,置于干燥处。

SDS

SDS:343dfc2a4344c4f314b12e895005a54d
查看

模块 1. 化学品
1.1 产品标识符
: 双(11-羟基十一烷基)二硫化物
产品名称
1.2 鉴别的其他方法
无数据资料
1.3 有关的确定了的物质或混合物的用途和建议不适合的用途
仅用于研发。不作为药品、家庭或其它用途。

模块 2. 危险性概述
2.1 GHS-分类
皮肤刺激 (类别 2)
眼睛刺激 (类别 2A)
特异性靶器官系统毒性(一次接触) (类别 3)
2.2 GHS 标记要素,包括预防性的陈述
象形图
警示词 警告
危险申明
H315 造成皮肤刺激。
H319 造成严重眼刺激。
H335 可能引起呼吸道刺激。
警告申明
预防措施
P261 避免吸入粉尘/烟/气体/烟雾/蒸气/喷雾.
P264 操作后彻底清洁皮肤。
P271 只能在室外或通风良好之处使用。
P280 穿戴防护手套/ 眼保护罩/ 面部保护罩。
事故响应
P302 + P352 如果皮肤接触:用大量肥皂和水清洗。
P304 + P340 如吸入: 将患者移到新鲜空气处休息,并保持呼吸舒畅的姿势。
P305 + P351 + P338 如与眼睛接触,用水缓慢温和地冲洗几分钟。如戴隐形眼镜并可方便地取
出,取出隐形眼镜,然后继续冲洗.
P312 如感觉不适,呼救中毒控制中心或医生.
P321 具体处置(见本标签上提供的急救指导)。
P332 + P313 如觉皮肤刺激:求医/就诊。
P337 + P313 如仍觉眼睛刺激:求医/就诊。
P362 脱掉沾污的衣服,清洗后方可再用。
安全储存
P403 + P233 存放于通风良的地方。 保持容器密闭。
P405 存放处须加锁。
废弃处置
P501 将内容物/ 容器处理到得到批准的废物处理厂。
2.3 其它危害物
恶臭

模块 3. 成分/组成信息
3.1 物 质
: C22H46O2S2
分子式
: 406.73 g/mol
分子量
组分 浓度或浓度范围
Bis(11-hydroxyundecyl) disulfide
<=100%
化学文摘登记号(CAS 119438-02-7
No.)

模块 4. 急救措施
4.1 必要的急救措施描述
一般的建议
请教医生。 向到现场的医生出示此安全技术说明书。
吸入
如果吸入,请将患者移到新鲜空气处。 如呼吸停止,进行人工呼吸。 请教医生。
皮肤接触
用肥皂和大量的水冲洗。 请教医生。
眼睛接触
用大量水彻底冲洗至少15分钟并请教医生。
食入
切勿给失去知觉者通过口喂任何东西。 用水漱口。 请教医生。
4.2 主要症状和影响,急性和迟发效应
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
4.3 及时的医疗处理和所需的特殊处理的说明和指示
无数据资料

模块 5. 消防措施
5.1 灭火介质
灭火方法及灭火剂
用水雾,抗乙醇泡沫,干粉或二氧化碳灭火。
5.2 源于此物质或混合物的特别的危害
碳氧化物, 硫氧化物
5.3 给消防员的建议
如必要的话,戴自给式呼吸器去救火。
5.4 进一步信息
无数据资料

模块 6. 泄露应急处理
6.1 作业人员防护措施、防护装备和应急处置程序
使用个人防护用品。 避免粉尘生成。 避免吸入蒸气、烟雾或气体。 保证充分的通风。
人员疏散到安全区域。 避免吸入粉尘。
6.2 环境保护措施
不要让产品进入下水道。
6.3 泄漏化学品的收容、清除方法及所使用的处置材料
收集和处置时不要产生粉尘。 扫掉和铲掉。 放入合适的封闭的容器中待处理。
6.4 参考其他部分
丢弃处理请参阅第13节。

模块 7. 操作处置与储存
7.1 安全操作的注意事项
避免接触皮肤和眼睛。 避免形成粉尘和气溶胶。
在有粉尘生成的地方,提供合适的排风设备。一般性的防火保护措施。
7.2 安全储存的条件,包括任何不兼容性
贮存在阴凉处。 使容器保持密闭,储存在干燥通风处。
建议的贮存温度: 2 - 8 °C
充气操作和储存
7.3 特定用途
无数据资料

模块 8. 接触控制和个体防护
8.1 容许浓度
最高容许浓度
没有已知的国家规定的暴露极限。
8.2 暴露控制
适当的技术控制
根据良好的工业卫生和安全规范进行操作。 休息前和工作结束时洗手。
个体防护设备
眼/面保护
带有防护边罩的安全眼镜符合 EN166要求请使用经官方标准如NIOSH (美国) 或 EN 166(欧盟)
检测与批准的设备防护眼部。
皮肤保护
戴手套取 手套在使用前必须受检查。
请使用合适的方法脱除手套(不要接触手套外部表面),避免任何皮肤部位接触此产品.
使用后请将被污染过的手套根据相关法律法规和有效的实验室规章程序谨慎处理. 请清洗并吹干双手
所选择的保护手套必须符合EU的89/686/EEC规定和从它衍生出来的EN 376标准。
身体保护
防渗透的衣服, 防护设备的类型必须根据特定工作场所中的危险物的浓度和数量来选择。
呼吸系统防护
如须暴露于有害环境中,请使用P95型(美国)或P1型(欧盟 英国
143)防微粒呼吸器。如需更高级别防护,请使用OV/AG/P99型(美国)或ABEK-P2型 (欧盟 英国 143)
防毒罐。
呼吸器使用经过测试并通过政府标准如NIOSH(US)或CEN(EU)的呼吸器和零件。

模块 9. 理化特性
9.1 基本的理化特性的信息
a) 外观与性状
形状: 固体
b) 气味
恶臭
c) 气味阈值
无数据资料
d) pH值
无数据资料
e) 熔点/凝固点
熔点/凝固点: 80 - 84 °C
f) 沸点、初沸点和沸程
80 - 84 °C 在 1,013 hPa
g) 闪点
无数据资料
h) 蒸发速率
无数据资料
i) 易燃性(固体,气体)
无数据资料
j) 高的/低的燃烧性或爆炸性限度 无数据资料
k) 蒸气压
无数据资料
l) 蒸汽密度
无数据资料
m) 密度/相对密度
无数据资料
n) 水溶性
无数据资料
o) n-辛醇/水分配系数
无数据资料
p) 自燃温度
无数据资料
q) 分解温度
无数据资料
r) 粘度
无数据资料

模块 10. 稳定性和反应活性
10.1 反应性
无数据资料
10.2 稳定性
无数据资料
10.3 危险反应
无数据资料
10.4 应避免的条件
无数据资料
10.5 不相容的物质
强氧化剂
10.6 危险的分解产物
其它分解产物 - 无数据资料

模块 11. 毒理学资料
11.1 毒理学影响的信息
急性毒性
无数据资料
皮肤刺激或腐蚀
无数据资料
眼睛刺激或腐蚀
无数据资料
呼吸道或皮肤过敏
无数据资料
生殖细胞致突变性
无数据资料
致癌性
IARC:
此产品中没有大于或等于 0。1%含量的组分被 IARC鉴别为可能的或肯定的人类致癌物。
生殖毒性
无数据资料
特异性靶器官系统毒性(一次接触)
吸入 - 可能引起呼吸道刺激。
特异性靶器官系统毒性(反复接触)
无数据资料
吸入危险
无数据资料
潜在的健康影响
吸入 吸入可能有害。 引起呼吸道刺激。
摄入 如服入是有害的。
皮肤 通过皮肤吸收可能有害。 造成皮肤刺激。
眼睛 造成严重眼刺激。
接触后的征兆和症状
据我们所知,此化学,物理和毒性性质尚未经完整的研究。
附加说明
化学物质毒性作用登记: 无数据资料

模块 12. 生态学资料
12.1 生态毒性
无数据资料
12.2 持久性和降解性
无数据资料
12.3 潜在的生物累积性
无数据资料
12.4 土壤中的迁移性
无数据资料
12.5 PBT 和 vPvB的结果评价
无数据资料
12.6 其它不良影响
无数据资料

模块 13. 废弃处置
13.1 废物处理方法
产品
将剩余的和不可回收的溶液交给有许可证的公司处理。
联系专业的拥有废弃物处理执照的机构来处理此物质。
与易燃溶剂相溶或者相混合,在备有燃烧后处理和洗刷作用的化学焚化炉中燃烧
受污染的容器和包装
按未用产品处置。

模块 14. 运输信息
14.1 联合国危险货物编号
欧洲陆运危规: - 国际海运危规: - 国际空运危规: 3335
14.2 联合国运输名称
欧洲陆运危规: 非危险货物
国际海运危规: 非危险货物
国际空运危规: Aviation regulated solid, n.o.s. (Bis(11-hydroxyundecyl) disulfide)
14.3 运输危险类别
欧洲陆运危规: - 国际海运危规: - 国际空运危规: 9
14.4 包裹组
欧洲陆运危规: - 国际海运危规: - 国际空运危规: III
14.5 环境危险
欧洲陆运危规: 否 国际海运危规 国际空运危规: 否
海洋污染物(是/否): 否
14.6 对使用者的特别提醒
无数据资料


模块 15 - 法规信息
N/A


模块16 - 其他信息
N/A

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    双(11-羟基十一烷基)二硫化物三乙胺 作用下, 以 四氢呋喃二氯甲烷氯仿 为溶剂, 反应 24.0h, 生成 disulfanediylbis(undecane-11,1-diyl) bis(2-(trimethylammonio)ethyl) bis(phosphate)
    参考文献:
    名称:
    Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:  Insights into Nonfouling Properties of Zwitterionic Materials
    摘要:
    In this work, we show the strong resistance of zwitterionic phosphorylcholine (PC) self-assembled monolayers (SAMS) to protein adsorption and examine key factors leading to their nonfouling behavior using both experimental and molecular simulation techniques. Zwitterions with a balanced charge and minimized dipole are excellent candidates as nonfouling materials due to their strong hydration capacity via electrostatic interactions.
    DOI:
    10.1021/ja054169u
  • 作为产物:
    描述:
    bis(ω-trimethylsiloxyundecyl)disulfide 在 5-mercapto-2-benzimidazole sulfonic acid 作用下, 以 氘代氯仿 为溶剂, 生成 双(11-羟基十一烷基)二硫化物
    参考文献:
    名称:
    磺酸功能化金纳米颗粒:一种胶体结合催化剂,用于自组装单层软光刻应用
    摘要:
    在本报告中,我们提出了一种新的光刻方法来制备图案化表面。酸不稳定三甲基甲硅烷基醚 (TMS-OC(11)H(22)S)(2) (TMS 吸附物) 的自组装单层 (SAMs) 在金上形成。5-Mercapto-2-benzimidazole 磺酸钠盐 (MBS-Na(+)) 用作金纳米粒子的配体。这些单层保护的金胶体 (MPCs) 通过离子交换转化为具有催化活性的 H(+) 形式。这种胶体结合催化剂水解 TMS 吸附物 (TMS-OC(11)H(22)S)(2) 在溶液中和在金表面自组装时。在预先形成的 TMS SAM 上微接触印刷活性胶体结合催化剂导致胶体沉积到 SAM 上。在冲洗掉催化剂纳米颗粒后,形成了图案化的表面,如 AFM 所示。
    DOI:
    10.1021/ja0271431
点击查看最新优质反应信息

文献信息

  • Gold Glyconanoparticles: Synthetic Polyvalent Ligands Mimicking Glycocalyx-Like Surfaces as Tools for Glycobiological Studies
    作者:África G Barrientos、Jesús M. de la Fuente、Teresa C. Rojas、Asunción Fernández、Soledad Penadés
    DOI:10.1002/chem.200204544
    日期:2003.5.9
    methodology is described for tailoring sugar-functionalised gold nanoclusters (glyconanoparticles) that have 3D polyvalent carbohydrate display and globular shapes. This methodology allows the preparation of glyconanoparticles with biologically significant oligosaccharides as well as with differing carbohydrate density. Fluorescent glyconanoparticles have been also prepared for labelling cells in biological
    描述了一种简单通用的方法,用于定制具有3D多价碳水化合物展示和球状形状的糖官能化金纳米团簇(糖纳米颗粒)。该方法允许制备具有生物学上显着的低聚糖以及具有不同碳水化合物密度的糖纳米颗粒。还已经制备了荧光糖纳米颗粒以在生物测试中标记细胞。该材料是水溶性的,在生理条件下稳定,并且呈现出特别小的芯尺寸。所有这些都已通过(1)NMR,UV和IR光谱,TEM和元素分析进行​​了表征。它们的高度多价网络可以模拟糖鞘脂的聚集和质膜上的相互作用,从而为糖生物学研究提供了可控的系统。此外,
  • N-Phenyltriazolinedione as an efficient, selective, and reusable reagent for the oxidation of thiols to disulfides
    作者:Angelos Christoforou、Georgia Nicolaou、Yiannis Elemes
    DOI:10.1016/j.tetlet.2006.10.134
    日期:2006.12
    N-Phenyltriazolinedione is an efficient and chemoselective reagent for the oxidation of thiols to their corresponding symmetrical disulfides. The method is applicable to aromatic, aliphatic, and bi-functional thiols. The one-pot reaction takes a few minutes (in most cases studied) for completion and after a simple work-up affords the corresponding symmetrical disulfides in very good to excellent yields
    N-苯基三唑啉二酮是一种有效的化学选择性试剂,可将硫醇氧化成其相应的对称二硫化物。该方法适用于芳族,脂族和双官能硫醇。一锅法反应需要几分钟(在大多数情况下都是研究完成)的完成,并且在简单的后处理后,即可以非常好的至极好的收率得到相应的对称二硫化物。此外,在不存在用于液体硫醇的溶剂的情况下,可以以相同的结果进行反应。
  • CONTACT-KILLING, QAC FUNCTIONALIZED THERMOPLASTIC POLYURETHANE FOR CATHETER APPLICATIONS
    申请人:THE UNIVERSITY OF AKRON
    公开号:US20190106525A1
    公开(公告)日:2019-04-11
    In various embodiments, the present invention provides a functionalized thermoplastic polyurethane (TPU) containing bulk incorporated or surface-grafted quaternary ammonium compounds (QAC)s for contact-killing of a variety of microbes, where the QACs are on the surface of TPU to provide a sterile surface material that prevents bacteria commonly involved in device-associated infections (DAIs) from proliferating. The functionalized TPUs of the present invention can be formed into a wide variety of 3-dimensional shapes, such as catheters, medical tubing, laryngeal or tracheal stents, sutures, prosthetics, wound dressings, and/or a coating for medical devices and contains the residue of either a QAC containing diol monomer or an alkene functional diol monomer, which then allows the TPU to be functionalized with a QAC containing disulfide or free thiol compound, to form a quaternary ammonium functionalized thermoplastic polyurethane compound having antimicrobial properties for use in medical devices.
    在各种实施方式中,本发明提供了一种功能化的热塑性聚氨酯(TPU),其中包含大量引入或表面接枝的季铵化合物(QAC),用于接触杀灭多种微生物,其中QAC位于TPU表面,以提供一种无菌表面材料,防止通常涉及设备相关感染(DAIs)的细菌繁殖。本发明的功能化TPU可以形成多种三维形状,例如导管、医疗管、喉部或气管支架、缝合线、假体、伤口敷料和/或医疗设备的涂层,并包含含有二醇单体或烯功能二醇单体的QAC残留物,这使得TPU可以用含有二硫键或自由巯基化合物的QAC进行功能化,以形成具有用于医疗设备的抗菌性能的季铵功能化热塑性聚氨酯化合物。
  • Zwitterionic phosphorylcholine as a better ligand for stabilizing large biocompatible gold nanoparticles
    作者:Qiao Jin、Jian-Ping Xu、Jian Ji、Jia-Cong Shen
    DOI:10.1039/b801959b
    日期:——
    Zwitterionic phosphorylcholine showed better stabilization than oligo(ethylene glycol) in protecting big gold nanoparticles.
    两性离子的磷酸胆碱比聚乙二醇更能稳定保护大金纳米颗粒。
  • Design, Self-Assembly, and Switchable Wettability in Hydrophobic, Hydrophilic, and Janus Dendritic Ligand–Gold Nanoparticle Hybrid Materials
    作者:Katherine C. Elbert、Davit Jishkariani、Yaoting Wu、Jennifer D. Lee、Bertrand Donnio、Christopher B. Murray
    DOI:10.1021/acs.chemmater.7b02928
    日期:2017.10.24
    stability, and self-assembly into well-defined complex architectures is of paramount importance for emergent nano- and biotechnologies, and each depends strongly on the ligand shell composition and chemical nature. In this study, a series of dendritic ligands with hydrophobic, hydrophilic, and Janus surface groups was synthesized, grafted onto Au NPs, and their effects on the self-assembly behavior and
    对于新兴的纳米技术和生物技术而言,控制纳米颗粒(NPs)的表面极性,胶体稳定性和自组装成定义良好的复杂体系结构至关重要,并且每种技术都强烈取决于配体壳的组成和化学性质。在这项研究中,合成了一系列具有疏水,亲水和Janus表面基团的树枝状配体,并将其接枝到Au NP上,并研究了它们对相应杂化材料的自组装行为和表面极性的影响。配体合成采用了一种通用的灵活策略,该策略可独立引入负责表面极性和胶体性质的树枝状端基以及特定的表面NPs结合基团,从而减少了合成步骤。通过溶液相配体交换将获得的树状配体嫁接到NP表面,并使用多种技术(例如透射电子显微镜,UV-vis和小角度X射线散射)研究所得的NP-树突杂化体。当控制自组装过程中的溶剂蒸发速率时,这些树枝状的金杂化物会自组织成高度有序的薄膜,该薄膜由紧密排列的NP阵列组成,其中颗粒间的分离可以根据树突生成和端基化学的变化而变化。此外,接触角和胶体观察表明
查看更多