摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

9,10-dioxa-syn-(glutathionylmethyl,methyl)(methyl,methyl)bimane | 88859-65-8

中文名称
——
中文别名
——
英文名称
9,10-dioxa-syn-(glutathionylmethyl,methyl)(methyl,methyl)bimane
英文别名
bimane-S-glutathione;GS-bimane;L-GS-bimane;(2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-1-oxo-3-[(1,2,6-trimethyl-3,5-dioxopyrazolo[1,2-a]pyrazol-7-yl)methylsulfanyl]propan-2-yl]amino]-5-oxopentanoic acid
9,10-dioxa-syn-(glutathionylmethyl,methyl)(methyl,methyl)bimane化学式
CAS
88859-65-8
化学式
C20H27N5O8S
mdl
——
分子量
497.529
InChiKey
KPJNKLWIESQKCG-STQMWFEESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.7
  • 重原子数:
    34
  • 可旋转键数:
    12
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    225
  • 氢给体数:
    5
  • 氢受体数:
    11

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    吡咯烷定生物碱逆转录酶和莫诺他林的肝毒性比较研究。
    摘要:
    许多吡咯烷核苷生物碱(PAs)可能会导致动物和人类肝损伤。不同的肝毒性PA可以产生相似的肝毒性作用,但其毒性程度可能相差很大。Retrorsine(RTS)和Monocrotaline(MCT)共享相同的核心结构(retronecine)和相似的代谢激活途径。RTS和MCT均会造成肝损伤,但前者比后者更具肝毒性。酶动力学研究表明,RTS的Vmax / Km值是MCT的5.5倍。此外,在相同剂量下,RTS产生的吡咯-谷胱甘肽(GSH)缀合物和蛋白质共价结合水平更高。此外,RTS诱导了肝脏GSH的大量消耗,而MCT几乎没有。
    DOI:
    10.1021/acs.chemrestox.6b00260
点击查看最新优质反应信息

文献信息

  • Iterative synthetic strategies and gene deletant experiments enable the first identification of polysulfides in <i>Saccharomyces cerevisiae</i>
    作者:Lisa I. Pilkington、Rebecca C. Deed、Katie Parish-Virtue、Chien-Wei Huang、Michelle E. Walker、Vladimir Jiranek、David Barker、Bruno Fedrizzi
    DOI:10.1039/c9cc03020d
    日期:——

    Polysulfides, potential signalling molecules, were synthesised and then found and explored for the first time in yeast.

    硫化物,潜在的信号分子,首次在酵母中被合成、发现并探索。
  • Bimanes. 17. (Haloalkyl)-1,5-diazabicyclo[3.3.O]octadienediones (halo-9,10-dioxabimanes): reactivity toward the tripeptide thiol, glutathione
    作者:Annette E. Radkowsky、Edward M. Kosower
    DOI:10.1021/ja00275a045
    日期:1986.7
  • Plasmon-Resonance-Enhanced Absorption and Circular Dichroism
    作者:Itai Lieberman、Gabriel Shemer、Tcipi Fried、Edward M. Kosower、Gil Markovich
    DOI:10.1002/anie.200800231
    日期:2008.6.16
  • Hepatic mercapturic acid formation: involvement of cytosolic cysteinylglycine S-conjugate dipeptidase activity
    作者:Claudio Jösch、Helmut Sies、Theodorus P.M Akerboom
    DOI:10.1016/s0006-2952(98)00065-3
    日期:1998.9
    The role of cysteinylglycine S-conjugate dipeptidases in the intrahepatic mercapturic acid pathway was investigated in rat liver. Subcellular compartmentation studies and liver perfusions were performed rising monochlorobimane and bimane S-conjugates as model compounds. The major parr (over 95%) of total hepatic cysteinylglycine S-conjugate dipeptidase activity was Located in the cytosol. Lower specific activity appeared in the canalicular plasma membrane fraction. Similar hepatic localization of dipeptidase activity was seen in the guinea pig. In intact rat liver perfused with monochlorobimane, the major products were the glutathione S-conjugate (mBSG) and the cysteinylglycine S-conjugate (mBCG) in bile. Minor amounts of the cysteine S-conjugate (mBCys) and the mercapturic acid (mBNAc) were formed, indicating a limitation in further metabolism of the dipeptide S-conjugate in the biliary space. However, when the dipeptide S-conjugate was offered to the sinusoidal space in liver perfusions, substantial uptake and conversion to mBNAc was observed, and only trace amounts of the infused dipeptide appeared in bile. The data suggest that cytosolic cysteinylglycine S-conjugate dipeptidase as identified here is involved in hepatic mercapturic acid formation from sinusoidal cysteinylglycine S-conjugates. This is especially of significance for species such as guinea pig and human, in which dipeptide S-conjugates are generated in the sinusoidal domain of the liver due to the presence of high gamma-glutamyltranspeptidase activity. (C) 1998 Elsevier Science Inc.
  • Design and Synthesis of Highly Sensitive Fluorogenic Substrates for Glutathione S-Transferase and Application for Activity Imaging in Living Cells
    作者:Yuuta Fujikawa、Yasuteru Urano、Toru Komatsu、Kenjiro Hanaoka、Hirotatsu Kojima、Takuya Terai、Hideshi Inoue、Tetsuo Nagano
    DOI:10.1021/ja802423n
    日期:2008.11.5
    Here we report the development of fluorogenic substrates for glutathione S-transferase (GST), a multigene-family enzyme mainly involved in detoxification of endogenous and exogenous compounds, including drug metabolism. GST is often overexpressed in a variety of malignancies and is involved in the development of resistance to various anticancer drugs. Despite the medical significance of this enzyme, no practical fluorogenic substrates for fluorescence imaging of GST activity or for high-throughput screening of GST inhibitors are yet available. So, we set out to develop new fluorogenic substrates for GST. In preliminary studies, we found that 3,4-dinitrobenzanilide (NNBA) is a specific substrate for GST and established the mechanisms of its glutathionylation and denitration. Using these results as a basis for off/on control of fluorescence, we designed and synthesized new fluorogenic substrates, DNAFs, and a cell membrane-permeable variant, DNAT-Me. These fluorogenic substrates provide a dramatic fluorescence increase upon GST-catalyzed glutathionylation and have excellent kinetic parameters for the present purpose. We were able to detect nuclear localization of GSH/GST activity in HuCCT1 cell lines with the use of DNAT-Me. These results indicate that the newly developed fluorogenic substrates should be useful not only for high-throughput GST-inhibitor screening but also for studies on the mechanisms of drug resistance in cancer cells.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸