摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(phthalic acid-O-)yl N-methylcarbamate

中文名称
——
中文别名
——
英文名称
(phthalic acid-O-)yl N-methylcarbamate
英文别名
2-(Methylcarbamoyloxycarbonyl)benzoic acid;2-(methylcarbamoyloxycarbonyl)benzoic acid
(phthalic acid-O-)yl N-methylcarbamate化学式
CAS
——
化学式
C10H9NO5
mdl
——
分子量
223.185
InChiKey
BQTAZESGMNXNDQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.7
  • 重原子数:
    16
  • 可旋转键数:
    4
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.1
  • 拓扑面积:
    92.7
  • 氢给体数:
    2
  • 氢受体数:
    5

反应信息

  • 作为产物:
    描述:
    甲萘威双氧水铁粉 、 sodium chloride 作用下, 生成 萘酚1,4-萘醌(phthalic acid-O-)yl N-methylcarbamate
    参考文献:
    名称:
    Oxidation of Carbaryl in Aqueous Solution by Membrane Anodic Fenton Treatment
    摘要:
    Carbaryl, a commonly used insecticide, was used in this study as a probe to investigate a new Fenton treatment technology, ion exchange membrane anodic Fenton treatment (membrane AFT). It was found that the degradation kinetics of carbaryl by membrane AFT obeys a previously published AFT model quite well. The NaCl (electrolyte) concentration in two half-cells was optimized for two kinds of membrane. Effects of the H2O2/Fe2+ ratio and the Fenton reagent delivery rate were also investigated. The treatment efficiency for anion membrane AFT is higher than for salt-bridge AFT under the same operating conditions. Decreasing the delivery rate of Fenton reagents and increasing the treatment temperature also increase the treatment efficiency. The activation energy for carbaryl degradation by anion membrane AFT was estimated to be 14.7 kJ(.)mol(-1). 1-Naphthol, 1,4-naphthoquinone, and (phthalic acid-O)yl N-methylcarbamate were detected by GC-MS as the degradation products of carbaryl by Fenton treatment. No decrease in carbaryl degradation rate was found during repeated use (100 times) of the anion exchange membrane. High and stable treatment efficiency can be achieved using an anion exchange membrane rather than a salt-bridge in the AFT system. Because of its effectiveness and convenience, the use of an ion exchange membrane as a substitute for the salt-bridge used in the previous AFT system has brought the AFT technology a major step closer to practical application.
    DOI:
    10.1021/jf011434w
点击查看最新优质反应信息

文献信息

  • Oxidation of Carbaryl in Aqueous Solution by Membrane Anodic Fenton Treatment
    作者:Qiquan Wang、Ann T. Lemley
    DOI:10.1021/jf011434w
    日期:2002.4.1
    Carbaryl, a commonly used insecticide, was used in this study as a probe to investigate a new Fenton treatment technology, ion exchange membrane anodic Fenton treatment (membrane AFT). It was found that the degradation kinetics of carbaryl by membrane AFT obeys a previously published AFT model quite well. The NaCl (electrolyte) concentration in two half-cells was optimized for two kinds of membrane. Effects of the H2O2/Fe2+ ratio and the Fenton reagent delivery rate were also investigated. The treatment efficiency for anion membrane AFT is higher than for salt-bridge AFT under the same operating conditions. Decreasing the delivery rate of Fenton reagents and increasing the treatment temperature also increase the treatment efficiency. The activation energy for carbaryl degradation by anion membrane AFT was estimated to be 14.7 kJ(.)mol(-1). 1-Naphthol, 1,4-naphthoquinone, and (phthalic acid-O)yl N-methylcarbamate were detected by GC-MS as the degradation products of carbaryl by Fenton treatment. No decrease in carbaryl degradation rate was found during repeated use (100 times) of the anion exchange membrane. High and stable treatment efficiency can be achieved using an anion exchange membrane rather than a salt-bridge in the AFT system. Because of its effectiveness and convenience, the use of an ion exchange membrane as a substitute for the salt-bridge used in the previous AFT system has brought the AFT technology a major step closer to practical application.
  • Competitive Degradation and Detoxification of Carbamate Insecticides by Membrane Anodic Fenton Treatment
    作者:Qiquan Wang、Ann T. Lemley
    DOI:10.1021/jf034311f
    日期:2003.8.1
    The competitive degradation of six carbamate insecticides by membrane anodic Fenton treatment (AFT), a new Fenton treatment technology, was carried out in this study. The carbamates studied were dioxacarb, carbaryl, fenobucarb, promecarb, bendiocarb, and carbofuran. The results indicate that AFT can effectively degrade these insecticides in both single component and multicomponent systems. The carbamates compete for hydroxyl radicals, and their kinetics obey the previously developed AFT kinetic model quite well. Hydroxyl radical reaction rate constants were obtained, and they decrease in the following order: dioxacarb approximate to carbaryl > fenobucarb > promecarb > bendiocarb > carbofuran. The AFT is shown to have higher treatment efficiency at higher temperature. Degradation products of the carbamates were determined by gas chromatography/mass spectrometry, and it appears that degradation can be initiated by hydroxyl radical attack at different sites in the molecule, depending on the individual structure of the compound. Substituted phenols are the commonly seen degradation products. The AFT treatment can efficiently remove the chemical oxygen demand of the carbamate mixture, significantly increasing the biodegradability. Earthworm studies show that the AFT is also an effective detoxification process.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐