摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[bis-(3,5-dimethyl-pyrrol-2-yl)-methyl]-pyridine | 52073-74-2

中文名称
——
中文别名
——
英文名称
4-[bis-(3,5-dimethyl-pyrrol-2-yl)-methyl]-pyridine
英文别名
——
4-[bis-(3,5-dimethyl-pyrrol-2-yl)-methyl]-pyridine化学式
CAS
52073-74-2
化学式
C18H21N3
mdl
——
分子量
279.385
InChiKey
HYAJKUKKXBYKSX-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.15
  • 重原子数:
    21.0
  • 可旋转键数:
    3.0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.28
  • 拓扑面积:
    44.47
  • 氢给体数:
    2.0
  • 氢受体数:
    1.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Effect of pyrrole substitution on the optical limiting properties of 3,5-distyrylBODIPYdyes
    摘要:
    研究了吡咯分子上 2,6- 位和 1,7- 位具有不同烷基取代模式的三种介吡啶基-二苯乙烯-BODIPY 染料的光学限制特性。在 3,5-位引入苯乙烯基团后,形成的染料具有很强的给体-[式:见正文]-受体(D-[式:见正文]-A)特性。这三种染料都具有良好的光学限制特性,其中一种在 2,6- 位和 1,7- 位均未取代的染料的二阶超极化率最高,这表明当中间芳基环可以自由旋转到 BODIPY 核心平面时,其光学限制特性会得到增强。
    DOI:
    10.1142/s108842462350044x
  • 作为产物:
    描述:
    参考文献:
    名称:
    Synthesis, Photophysical Properties and Solvatochromism of Meso-Substituted Tetramethyl BODIPY Dyes
    摘要:
    4,4-二氟-4-硼-3a,4a-二氮-s-吲哚荧光染料(BODIPYs)首次合成于近50年前;然而,其技术应用的探索仅在过去20年中开始。这些染料具有有趣的光物理特性,因而对其作为荧光标记物和/或染料的应用产生了越来越大的兴趣。在此,我们报告了四甲基BODIPY及四种中间体取代染料(2-噻吩基、4-吡啶基、4-氟苯基和4-硝基苯基衍生物)的合成。对它们的光物理特性(吸收光谱、发射光谱、荧光量子产率和时间分辨荧光)以及溶剂色谱行为进行了研究。吸收和发射几乎不受取代基的影响,在取代染料中观察到稍高的斯托克斯位移。取代基与较短的荧光寿命和较低的量子产率相关联。观察到Catalán溶剂描述符与光物理参数之间的良好相关性。同时,溶剂极化率描述符(SP)与光物理参数之间的相关性更好。总体而言,仅观察到轻微的溶剂色谱现象。4-吡啶基衍生物在发射光谱波长方面表现出相对显著的溶剂色谱现象,在甲醇中观察到了红移的发射。4-硝基苯取代的BODIPY在己烷中的荧光量子产率约高出30倍,这可能对实际应用具有兴趣。
    DOI:
    10.1007/s10895-013-1293-8
点击查看最新优质反应信息

文献信息

  • Structure Based Modulation of Electron Dynamics in <i>meso</i>-(4-Pyridyl)-BODIPYs: A Computational and Synthetic Approach
    作者:Daniel J. LaMaster、Nichole E. M. Kaufman、Adam S. Bruner、M. Graça H. Vicente
    DOI:10.1021/acs.jpca.8b05153
    日期:2018.8.9
    the excited states. Structural modification was able to restructure the low-lying molecular orbitals to effectively inhibit d-PeT. A new meso-(4-pyridyl)-BODIPY bearing 2,6-dichloro groups was synthesized and shown to exhibit enhanced charge recombination fluorescence. The fluorescence enhancement was determined to be the result of functionalization modulating the kinetics of the excited state dynamics
    研究了结构修饰对阳离子内消旋-(4-吡啶基)-BODIPYs电子结构和电子动力学的影响。设计了带有各种吸电子取代基的2,6-双官能化内消旋-(4-吡啶基)-BODIPY库,并使用DFT计算来模拟氧化还原性质,同时使用TDDFT来确定官能化对激发态的影响状态。结构修饰能够重组低位分子轨道,从而有效抑制 d-PeT。合成了带有 2,6-二基团的新型内消旋-(4-吡啶基)-BODIPY,并显示出增强的电荷重组荧光。荧光增强被确定为功能化调节激发态动力学的结果。
  • Discovery of <i>Meso</i>-(<i>meta</i>-Pyridinium) BODIPY Photosensitizers: <i>In Vitro</i> and <i>In Vivo</i> Evaluations for Antimicrobial Photodynamic Therapy
    作者:Guangyu Lin、Mei Hu、Rong Zhang、Yuanxing Zhu、Kedan Gu、Junping Bai、Jiyang Li、Xiaochun Dong、Weili Zhao
    DOI:10.1021/acs.jmedchem.1c01643
    日期:2021.12.23
    Antimicrobial photodynamic therapy (aPDT) has emerged as a novel and promising approach for the treatment of pathogenic microorganism infections. The efficacy of aPDT depends greatly on the behavior of the photosensitizer. Herein, we report the design, preparation, antimicrobial photodynamic activities, as well as structure–activity relationships of a series of photosensitizers modified at the meso position
    抗菌光动力疗法 (aPDT) 已成为治疗病原微生物感染的一种新颖且有前景的方法。aPDT 的功效很大程度上取决于光敏剂的行为。在此,我们报告了在具有各种吡啶基和吡啶鎓部分的 1,3,5,7-四甲基 BODIPY 支架的中间位置修饰的一系列光敏剂的设计、制备、抗菌光动力学活性以及构效关系。所有光敏剂的光动力抗菌活性均已针对黄色葡萄球菌、大肠杆菌、白色念珠菌和耐甲氧西林黄色葡萄球菌(MRSA) 进行了测试。甲基meso- ( meta - pyridinium) BODIPY 光敏剂 ( 3c ) 在最小抑制浓度 (MIC) 范围为 0.63 至 1.25 μM 和 81 J/cm 2的光剂量下对这些病原体具有最高的光毒性。此外,3c在黄色葡萄球菌感染的小鼠伤口中表现出令人印象深刻的抗菌功效。总之,这些发现表明3c作为抗病原微生物感染的抗微生物光敏剂是一种很有前途的候选物。
  • Synthesis and photo-physical properties of a series of BODIPY dyes
    作者:Stefano Banfi、Gianluca Nasini、Stefano Zaza、Enrico Caruso
    DOI:10.1016/j.tet.2013.04.064
    日期:2013.6
    A series of 39 boron-dipyrrolylmethenes (BODIPYs) have been synthesized and characterized. Their spectroscopic properties, degree of lipophilicity, chemical stability under irradiation, and singlet-oxygen generation rate have also been studied. These compounds differ in the presence of ethyl groups (group A), hydrogens (group B) or iodines (group C) on the 2,6 positions; these appendices confer particular characteristics to each group. The presence of an aromatic substituent or hydrogen on the indacene 8 position produces 13 different molecules of each group. Besides the effects exerted by the group or atom on the 2,6 positions, the substituent on the 8 position exerts a further effect on the physico-chemical parameters, thus the desired properties of BODIPYs, concerning fluorescence, lipophilicity, and singlet oxygen production can be modulated accordingly. (C) 2013 Elsevier Ltd. All rights reserved.
  • Fluorescence Quenching of Two<i>meso</i>-Substituted Tetramethyl BODIPY Dyes by Fe(III) Cation
    作者:Lucas C. D. Rezende、Flavio S. Emery
    DOI:10.5935/0103-5053.20150054
    日期:——
    Ferric ion (Fe(III)) is a biologically and environmentally relevant cation so that its analysis in environmental and biological samples is often required. Borodiazaindacenes (BODIPYs) are known for their good photophysical properties; however, there are few BODIPY-based Fe(III) sensors reported. Herein, we show the characterisation of two BODIPY dyes whose fluorescence emission is diminished by such cation. Both "turn-off" probes, a catecholyl-substituted BODIPY and a pyridyl-substituted BODIPY, were synthetically obtained and an initial screening showed a relatively good specificity for Fe(III) when compared to other cations. Catecholyl-substituted BODIPY was more sensitive to Fe(III), however, with a pH-dependent analytical performance and low brightness. On the other hand, pyridyl-substituted BODIPY was very bright and its analytical performance was apparently pH-independent, however, it was less sensitive to the analyte. In conclusion, we show herein the obtainment and characterisation of two probes with promising analytical value in the analysis of Fe(III).
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S,2'S)-(-)-[N,N'-双(2-吡啶基甲基]-2,2'-联吡咯烷双(乙腈)铁(II)六氟锑酸盐 (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 (1'R,2'S)-尼古丁1,1'-Di-N-氧化物 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸氯苯那敏-D6 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 韦德伊斯试剂 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非布索坦杂质66 非尼拉朵 非尼拉敏 雷索替丁 阿雷地平 阿瑞洛莫 阿扎那韦中间体 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 镉,二碘四(4-甲基吡啶)- 锌,二溴二[4-吡啶羧硫代酸(2-吡啶基亚甲基)酰肼]-