Palbociclib is mainly hepatically transformed. the metabolism is mainly performed by the activities of the cytochrome P450 isoenzyme 3A and the sulfotransferase 2A1. The metabolism of palbociclib is represented mainly by reactions of oxidation and sulfonation followed by acylation and glucuronidation as minor reactions. After its metabolism, palbociclib forms mainly inactive glucuronide and sulfamic acid conjugates. The major circulating metabolite, accounting for 1.5% of the dose in excreta is is the glucuronide conjugate.
In the large clinical trials, adverse events were common and led to dose reductions in one-third of patients and discontinuation in 8%. Publications on the efficacy and safety of palbociclib rarely mentioned serum ALT elevations or hepatotoxicity. In a study of women with refractory, metastatic breast cancer, serum ALT elevations occurred in 6% [2% over 5 times ULN] receiving palbociclib and fulvestrant compared to 3% [none over 5 times ULN] on fulvestrant alone. Since its approval and more widescale use, there have been several reports of prominent ALT elevations arising after 2 or 3 cycles of palbociclib, that improved on discontinuation and recurred rapidly when restarted. Serum bilirubin and alkaline phosphatase levels were normal and symptoms were not mentioned. In addition, there have been rare reports of patients with refractory metastatic breast cancer who developed pseudocirrhosis within 2 to 3 months of starting palbociclib presenting with fatigue, jaundice and ascites with only modest elevations in serum aminotransferase and alkaline phosphatase levels. Imaging revealed a severely nodular liver, but liver histology showed desmoplastic changes in areas of necrotic metastatic tumor without cirrhosis. The liver also had vascular changes suggestive of sinusoidal obstruction syndrome, changes possibly caused by the dramatic involution of the metastatic tumor tissue combined with vascular damage. Pseudocirrhosis has been reported with other highly successful antineoplastic therapies of cancer metastatic to the liver, but the frequency is rare.
◉ Summary of Use during Lactation:No information is available on the clinical use of palbociclib during breastfeeding. Because palbociclib is 85% bound to plasma proteins, the amount in milk is likely to be low. However, its half-life is about 29 hours and it might accumulate in the infant. It is also given in combination with letrozole or fulvestrant, which may increase the risk to the infant. The manufacturer recommends that breastfeeding be discontinued during palbociclib therapy and for 3 weeks after the last dose.
◉ Effects in Breastfed Infants:Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk:Relevant published information was not found as of the revision date.
来源:Drugs and Lactation Database (LactMed)
毒理性
蛋白质结合
palbociclib与人体血浆蛋白的结合率约为85%。
Binding of palbociclib to human plasma proteins in vitro accounts for approximately 85% of the administered dose.
Palbociclib presents a linear pharmacokinetic profile and its peak plasma concentration was observed 6-12 hours after oral administration. The oral bioavailability is reported to be of 46% with a steady-state reached after 8 days and a median accumulation ratio of 2.4. The absorption of palbociclib is significantly reduced under fasting conditions and hence, food intake is recommended when this drug is administered.
The main route of elimination of palbociclib is through feces after hepatic metabolism while renal clearance seems to play a minor role accounting only for 17.5% of the eliminated dose.
[EN] AMINE-LINKED C3-GLUTARIMIDE DEGRONIMERS FOR TARGET PROTEIN DEGRADATION<br/>[FR] DÉGRONIMÈRES DE C3-GLUTARIMIDE LIÉS À UNE AMINE POUR LA DÉGRADATION DE PROTÉINES CIBLES
申请人:C4 THERAPEUTICS INC
公开号:WO2017197051A1
公开(公告)日:2017-11-16
This invention provides amine-linked C3-glutarimide Degronimers and Degrons for therapeutic applications as described further herein, and methods of use and compositions thereof as well as methods for their preparation.
[EN] ANTIBODY CONJUGATES COMPRISING TOLL-LIKE RECEPTOR AGONIST AND COMBINATION THERAPIES<br/>[FR] CONJUGUÉS D'ANTICORPS COMPRENANT UN AGONISTE DU RÉCEPTEUR DE TYPE TOLL ET POLYTHÉRAPIES
申请人:NOVARTIS AG
公开号:WO2018198091A1
公开(公告)日:2018-11-01
Provided herein are antibody conjugates comprising toll-like receptor agonists and the use of such conjugates for the treatment of cancer. In some embodiments, the conjugates comprise anti-HER2 antibodies. In some embodiments, the conjugates are used in combination with a second therapeutic agent.
[EN] COMBINATIONS AND DOSING REGIMES TO TREAT RB-POSITIVE TUMORS<br/>[FR] COMBINAISONS ET RÉGIMES POSOLOGIQUES POUR TRAITER DES TUMEURS RB-POSITIVES
申请人:G1 THERAPEUTICS INC
公开号:WO2016040858A1
公开(公告)日:2016-03-17
This invention directed to methods for treating select RB-positive cancers and other Rb- positive abnormal cellular proliferative disorders using CDK4/6 inhibitors in specific dosing and combination or alternation regimes. In one aspect, treatments of select RB-positive cancers are disclosed using specific CDK4/6 inhibitors in combination or alternation with another chemotherapeutic, for example, an additional kinase inhibitor, PD-1 inhibitor, or BCL-2 inhibitor, or combination thereof.
A compound of Formula (I), or a pharmaceutically acceptable salt thereof, is provided that has been shown to be useful for treating a PRC2-mediated disease or disorder:
wherein R
1
, R
2
, R
3
, R
4
, R
5
, and n are as defined herein.
[EN] MODIFIED PROTEINS AND PROTEIN DEGRADERS<br/>[FR] PROTÉINES MODIFIÉES ET AGENTS DE DÉGRADATION DE PROTÉINES
申请人:CULLGEN SHANGHAI INC
公开号:WO2021239117A1
公开(公告)日:2021-12-02
Provided herein are compounds, pharmaceutical compositions, and methods for binding or degrading target proteins. Further provided herein are compounds having a DNA damage-binding protein 1 (DDB1) binding moiety. Some such embodiments include a linker. Some such embodiments include a target protein binding moiety. Further provided herein are ligand-DDB1 complexes. Further provided herein are in vivo modified DDB1 proteins.