作者:Zhibin Li、Shaohua Chen、Shaowen Zhu、Jianjun Luo、Yaomou Zhang、Qunfang Weng
DOI:10.3390/molecules200813941
日期:——
A series of β-Carboline derivatives were designed, synthesized, and evaluated for their fungicidal activities in this study. Several derivatives electively exhibited fungicidal activities against some fungi. Especially, compound F5 exhibited higher fungicidal activity against Rhizoctonia solani (53.35%) than commercial antiviral agent validamycin (36.4%); compound F16 exhibited high fungicidal activity against Oospora citriaurantii ex Persoon (43.28%). Some of the alkaloids and their derivatives (compounds F4 and F25) exhibited broad-spectrum fungicidal activity. Specifically, compound F4 exhibited excellent high broad-spectrum fungicidal activity in vitro, and the curative and protection activities against P. litchi in vivo reached 92.59% and 59.26%, respectively. The new derivative, F4, with optimized physicochemical properties, obviously exhibited higher activities both in vitro and in vivo; therefore, F4 may be used as a new lead structure for the development of fungicidal drugs.
本研究设计、合成并评估了一系列β-吲哚衍生物的杀菌活性。几个衍生物表现出对某些真菌的选择性杀菌活性。特别是,化合物F5对根腐病菌(Rhizoctonia solani)的杀菌活性(53.35%)高于商业抗病毒药物惟克(validamycin)的活性(36.4%);化合物F16对柑橘糠病菌(Oospora citriaurantii ex Persoon)的杀菌活性较高(43.28%)。一些生物碱及其衍生物(化合物F4和F25)表现出广谱的杀菌活性。具体来说,化合物F4在体外表现出优异的广谱杀菌活性,对荔枝病(P. litchi)的治愈和保护活性分别达到92.59%和59.26%。新衍生物F4具有优化的物理化学性质,明显在体内外展现出更高的活性;因此,F4可能作为新型杀菌药物研发的领先结构。