Several pairs of syn and anti-furyl-ketoximes have been prepared, which have been characterised by their acetates, benzoates and p-toluenesulphonates. The configurations of the ketoximes were successfully established by chemical means and by their u.v. spectra
The synthesis of polyfunctionalizedpyrroles by reaction of a ketoxime with dimethyl acetylenedicarboxylate using europium(III) triflate as the catalyst is described.
Copper-mediated [3 + 2] oxidative cyclization of oxime acetate and its utility in the formal synthesis of fentiazac
作者:Nitin L Jadhao、Harish B. Musale、Jayant M. Gajbhiye、Vivek T. Humne
DOI:10.1039/d3ob01882b
日期:——
A new protocol for the direct synthesis of 2-aminothiazole has been developed from oxime acetate and readily available sodium thiocyanate using a copper catalyst. The present transformation has good functional group tolerance. Various thiazoles were smoothly synthesized in good to excellent yields. The applicability of the present method has been extended to the formal synthesis of the non-steroidal
Structure−Activity Relationships of <i>N</i>-Hydroxyurea 5-Lipoxygenase Inhibitors
作者:Andrew O. Stewart、Pramila A. Bhatia、Jonathan G. Martin、James B. Summers、Karen E. Rodriques、Michael B. Martin、James H. Holms、Jimmie L. Moore、Richard A. Craig、Teodozyj Kolasa、James D. Ratajczyk、Hormoz Mazdiyasni、Francis A. J. Kerdesky、Shari L. DeNinno、Robert G. Maki、Jennifer B. Bouska、Patrick R. Young、Carmine Lanni、Randy L. Bell、George W. Carter、Clint D. W. Brooks
DOI:10.1021/jm9700474
日期:1997.6.1
The discovery of second generation N-hydroxyurea 5-lipoxygenase inhibitors was accomplished through the development of a broad structure-activity relationship (SAR) study. This study identified requirements for improving potency and also extending duration by limiting metabolism. Potency could be maintained by the incorporation of heterocyclic templates substituted with selected lipophilic substituents. Duration of inhibition after oral administration was optimized by identification of structural features in the proximity of the N-hydroxyurea which correlated to low in vitro glucuronidation rates. Furthermore, the rate of in vitro glucuronidation was shown to be stereoselective for certain analogs. (R)-N-[3-[5-(4-Fluorophenoxy)-2-furyl]-1-methyl-2-propynyl]-N-hy- droxyurea (17c) was identified and selected for clinical development.