Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment
摘要:
Multidrug resistance (MDR) against standard therapies poses a serious challenge in cancer treatment, and there is a clinical need for new anticancer agents that would selectively target MDR malignancies. Our previous studies have identified a 4H-chromene system, CXL017 (4) as an example, that can preferentially kill MDR cancer cells. To further improve its potency, we have performed detailed structure-activity relationship (SAR) studies at the 3, 4, and 6 positions of the 4H-chromene system. The results reveal that the 3 and 4 positions prefer rigid and hydrophobic functional groups while the 6 position prefers a meta or para-substituted aryl functional group and the substituent should be small and hydrophilic. We have also identified and characterized nine MDR cancer cells that acquire MDR through different mechanisms and demonstrated the scope of our new lead, 9g, to selectively target different MDR cancers, which holds promise to help manage MDR in cancer treatment.
Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment
摘要:
Multidrug resistance (MDR) against standard therapies poses a serious challenge in cancer treatment, and there is a clinical need for new anticancer agents that would selectively target MDR malignancies. Our previous studies have identified a 4H-chromene system, CXL017 (4) as an example, that can preferentially kill MDR cancer cells. To further improve its potency, we have performed detailed structure-activity relationship (SAR) studies at the 3, 4, and 6 positions of the 4H-chromene system. The results reveal that the 3 and 4 positions prefer rigid and hydrophobic functional groups while the 6 position prefers a meta or para-substituted aryl functional group and the substituent should be small and hydrophilic. We have also identified and characterized nine MDR cancer cells that acquire MDR through different mechanisms and demonstrated the scope of our new lead, 9g, to selectively target different MDR cancers, which holds promise to help manage MDR in cancer treatment.
Improvements and Applications of the Transition Metal-Free Asymmetric Allylic Alkylation using Grignard Reagents and Magnesium Alanates
作者:David Grassi、Alexandre Alexakis
DOI:10.1002/adsc.201500495
日期:2015.10.12
Two new N-heterocyclic carbene (NHC) ligands have been synthesized and employed in the transition metal-free asymmetric allylic alkylation (AAA) mediated by Grignardreagents and magnesium alanates. The employment of these ligands showed high yields and improved regio- and enantioselectivity in the formation of tertiary and quaternary stereocenters. Moreover, the low catalyst loading (up to 0.3 mol%)
Inhibitors of protein kinase for the treatment of disease
申请人:——
公开号:US20030187007A1
公开(公告)日:2003-10-02
The present invention is directed in part towards methods of modulating the function of protein kinases with phenol- and hydroxynaphthalene-based compounds. The methods incorporate cells that express a protein kinase. In addition, the invention describes methods of preventing and treating protein kinase-related abnormal conditions in organisms with a compound identified by the invention. Furthermore, the invention pertains to phenol- and hydroxynaphthalene-based compounds and pharmaceutical compositions comprising these compounds.
INHIBITORS OF PROTEIN KINASE FOR THE TREATMENT OF DISEASE
申请人:LG Biomedical Institute
公开号:EP1412327A2
公开(公告)日:2004-04-28
[EN] INHIBITORS OF PROTEIN KINASE FOR THE TREATMENT OF DISEASE<br/>[FR] INHIBITEURS DE LA PROTEINE KINASE DESTINES AU TRAITEMENT D'UNE MALADIE
申请人:LG BIOMEDICAL INST
公开号:WO2002096867A2
公开(公告)日:2002-12-05
The present invention is directed in part towards methods of modulating the function of protein kinases with phenol- and hydroxynaphthalene-based compounds. The methods incorporate cells that express a protein kinase. In addition, the invention describes methods of preventing and treating protein kinase-related abnormal conditions in organisms with a compound identified by the invention. Furthermore, the invention pertains to phenol- and hydroxynaphthalene-based compounds and pharmaceutical compositions comprising these compounds.
Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4<i>H</i>-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment
作者:Gopalakrishnan Aridoss、Bo Zhou、David L. Hermanson、Nicholas P. Bleeker、Chengguo Xing
DOI:10.1021/jm300515q
日期:2012.6.14
Multidrug resistance (MDR) against standard therapies poses a serious challenge in cancer treatment, and there is a clinical need for new anticancer agents that would selectively target MDR malignancies. Our previous studies have identified a 4H-chromene system, CXL017 (4) as an example, that can preferentially kill MDR cancer cells. To further improve its potency, we have performed detailed structure-activity relationship (SAR) studies at the 3, 4, and 6 positions of the 4H-chromene system. The results reveal that the 3 and 4 positions prefer rigid and hydrophobic functional groups while the 6 position prefers a meta or para-substituted aryl functional group and the substituent should be small and hydrophilic. We have also identified and characterized nine MDR cancer cells that acquire MDR through different mechanisms and demonstrated the scope of our new lead, 9g, to selectively target different MDR cancers, which holds promise to help manage MDR in cancer treatment.