/Investigators/ studied the effects of methyl jasmonate in combination with sucrose on defense-related gene expression, stilbene and anthocyanin production in grapevine cell suspensions. The methyl jasmonate/sucrose treatment was effective in stimulating phenylalanine ammonia lyase, chalcone synthase, stilbene synthase, UDP-glucose: flavonoid-O-glucosyltransferase, proteinase inhibitor and chitinase gene expression, and triggered accumulation of both piceids and anthocyanins in cells, and trans-resveratrol and piceids in the extracellular medium...
Capsicum annuum /(C. annuum)/ suspension cell cultures were used to evaluate the effect of cyclodextrins and methyl jasmonate as elicitors of defense responses. The induced defense responses included the accumulation of sesquiterpenes and phytosterols and the activation of pathogenesis-related proteins, leading to reinforcement and modification of the cell wall architecture during elicitation and protection cells against biotic stress. The results showed that the addition of both cyclodextrins and methyl jasmonate induced the biosynthesis of two sesquiterpenes, aromadendrene and solavetivone. This response was clearly synergistic since the increase in the levels of these compounds was much greater in the presence of both elicitors than when they were used separately. The biosynthesis of phytosterols was also induced in the combined treatment, as the result of an additive effect. Likewise, the exogenous application of methyl jasmonate induced the accumulation of pathogenesis-related proteins. The analysis of the extracellular proteome showed the presence of amino acid sequences homologous to PR1 and 4, NtPRp27-like proteins and class I chitinases, peroxidases and the hydrolytic enzymes LEXYL1 and 2, arabinosidases, pectinases, nectarin IV and leucin-rich repeat protein, which suggests that methyl jasmonate plays a role in mediating defense-related gene product expression in C. annuum. Apart from these methyl jamonate-induced proteins, other PR proteins were found in both the control and elicited cell cultures of C. annuum. These included class IV chitinases, beta-1,3-glucanases, thaumatin-like proteins and peroxidases, suggesting that their expression is mainly constitutive since they are involved in growth, development and defense processes.
Boron is an essential plant micronutrient, but it is phytotoxic if present in excessive amounts in soil for certain plants such as Artemisia annua L. /(A. annua)/ that contains artemisinin (an important antimalarial drug) in its areal parts. Artemisinin is a sesquiterpene lactone with an endoperoxide bridge... the present research was conducted to determine whether the exogenous application of methyl jasmonate (MeJA) could combat the ill effects of excessive /Boron stress/ (B) present in the soil. According to the results obtained, the B toxicity induced oxidative stress and reduced the stem height as well as fresh and dry masses of the plant remarkably. The excessive amounts of soil B also lowered the net photosynthetic rate, stomatal conductance, internal CO2 concentration and total chlorophyll content in the leaves. In contrast, the foliar application of MeJA enhanced the growth and photosynthetic efficiency both in the stressed and non-stressed plants. The excessive B levels also increased the activities of antioxidant enzymes, such as catalase, peroxidase and superoxide dismutase... the MeJA application to the stressed plants reduced the amount of lipid peroxidation and stimulated the synthesis of antioxidant enzymes, enhancing the content and yield of artemisinin as well. Thus, it was concluded that MeJA might be utilized in mitigating the B toxicity and improving the content and yield of artemisinin in A. annua plant.
/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Poisons A and B/
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
Disclosed are compounds having the ability to inhibit cytochrome P450 2A6, 2A13, and/or 2B6 and tobacco products comprising them. Also disclosed are pharmaceutical compositions comprising them.
[EN] METHODS FOR PREPARATION OF JASMONATE COMPOUNDS<br/>[FR] PROCÉDÉS DE PRÉPARATION DE COMPOSÉS DE JASMONATE
申请人:VIDAC PHARMA LTD
公开号:WO2019135243A1
公开(公告)日:2019-07-11
This invention relates to methods for preparation of jasmonate compounds via a salt of jasmonic acid.
这项发明涉及通过茉莉酸盐制备茉莉酸酯化合物的方法。
Process for the preparation of alkylidenecyclopentanone derivatives
申请人:Chapuis Christian
公开号:US20050187299A1
公开(公告)日:2005-08-25
The present invention relates to the field of organic synthesis and more particularly to a new process for the preparation of a compound of formula (I), in the form of any one of its isomers or a mixture thereof,
wherein, more preferably, G represents a C═O group, R
1
represents a butyl group and R
2
represents a methyl group.
The process of the invention involves an 2-(1-hydroxyalkyl)-cyclopent-2-en-1-one derivative, as starting material, which can be then converted into a compound of formula (I) by a process comprising a thermal rearrangement. The 2-alkylidene-3-oxo-cyclopentylacetate derivative and the 2-(1-hydroxyalkyl)-cyclopent-2-en-1-one derivative are also an object of the invention.
The present invention relates to a method to evaluate and profile a fragrance composition according to the associated biometric response in humans to the composition. A group of at least 20 test participants is exposed to at least 3 fragrance compositions and at least 4 biometric Autonomatic Nervous System (ANS) parameters are measured. Partition and random/bootstrap forest statistical analysis methods are applied to create a profiling model.
An encapsulated perfume composition for use in personal care products adapted to be applied to, and left on, the skin or hair of a human or animal subject, said encapsulated perfume composition comprising one or more polyurea capsules having a volume average diameter of 20 to 90 microns, and a capsule shell weight, which is 5 to 40% based on the total weight of the capsules.