Many low-molecular weight targeted radiotherapeutics (TRTs) are capable of rapidly achieving exceptional tumor to non-target ratios shortly after administration. However, the low tumor residence time of many TRTs limits therapeutic dose delivery and has become the Achilles heel to their clinical translation. To combat the tumor efflux of these otherwise promising agents, we have previously presented a strategy of equipping low-molecular weight TRTs with irreversible cysteine cathepsin inhibitors (e.g., E-64 analogues). These inhibitors are capable of forming irreversible adducts with cysteine proteases within the endolysosomal compartments of cells. Using these endolysosomal trapping agents (ETs), the receptor-targeted constructs are able to increase tumor retention and, thus, deliverable therapeutic doses. In this study, we examine this approach in the development of agents targeting the neurotensin receptor subtype 1 (NTSR1), a receptor overexpressed in numerous cancers. Using an antagonistic NTSR1-targeting vector, we explore the impact of charge modification of the ETs on the in vitro and in vivo biological performance of the constructs using HT-29 colon cancer models. Four ETs (based on the epoxysuccinyl peptide E-64) with various charge states were synthesized and incorporated into the structures of the NTSR1-targeted antagonist. These four 177Lu-labeled, ET-enhanced, NTSR1-targeted agents (177Lu-NA-ET1-4), along with the structurally analogous 177Lu-3BP-227, currently in clinical trials, underwent a battery of in vitro assays using HT-29 xenograft colon cancer cells to examine their NTSR1 binding, internalization and efflux, inhibition, and adduct formation properties. The biodistribution profile of these constructs was studied in an HT-29 mouse model. Charge modification of the terminal carboxylic acid and arginine of the ETs had deleterious effects on inhibition kinetics and in vitro adduct formation. Contrastingly, deletion of the arginine resulted in a modest increase in inhibition kinetics. Incorporation of ETs into the NTSR1-targeted agents was well-tolerated with minimal impact on the in vivo NTSR1 targeting but resulted in increased renal uptake. This study demonstrates that the ETs can be successfully incorporated into antagonistic NTSR1-targeted constructs without compromising their adduct formation capabilities. Based on these results, further exploration of the endolysosomal trapping approach is warranted in NTSR1- and other receptor-targeted antagonistic constructs.
许多低分子量靶向放射治疗药物(TRTs)能够在给药后不久迅速达到优异的肿瘤与非靶点比率。然而,许多靶向放射治疗药物的肿瘤停留时间较短,这限制了治疗剂量的传递,成为其临床转化的致命弱点。为了解决这些本来很有前景的药物的肿瘤外流问题,我们之前提出了一种在低分子量 TRTs 中加入不可逆半胱
氨酸酪
蛋白酶抑制剂(如 E-64 类似物)的策略。这些
抑制剂能够与细胞内溶酶体内的半胱
氨酸
蛋白酶形成不可逆的加合物。利用这些内溶酶体捕获剂(ETs),受体靶向构建物能够增加肿瘤保留率,从而提高可递送的治疗剂量。在本研究中,我们研究了这种针对神经紧张素受体亚型 1(
NTSR1)的药物开发方法,
NTSR1 是一种在多种癌症中过度表达的受体。我们使用一种拮抗
NTSR1 靶向载体,利用 HT-29 结肠癌模型探讨了 ET 的电荷修饰对构建体的体外和体内
生物学性能的影响。我们合成了四种具有不同电荷状态的 ET(基于环
氧琥珀酰肽 E-64),并将其纳入
NTSR1 靶向
拮抗剂的结构中。这四种 177Lu 标记、ET 增强、
NTSR1 靶向药剂(177Lu-NA-ET1-4)以及目前正在进行临床试验的结构类似的 177Lu-3
BP-227,使用 HT-29 异种移植结肠癌细胞进行了一系列体外试验,以检查它们的
NTSR1 结合、内化和外流、抑制和加合物形成特性。在 HT-29 小鼠模型中研究了这些构建物的
生物分布特征。对 ETs 的末端
羧酸和精
氨酸进行电荷修饰会对抑制动力学和体外加合物形成产生有害影响。相反,精
氨酸的缺失导致抑制动力学略有增加。在
NTSR1 靶向药物中掺入 ETs 的耐受性良好,对体内
NTSR1 靶向的影响极小,但会导致肾摄取量增加。这项研究表明,ETs 可以成功地加入到拮抗
NTSR1 靶向构建物中,而不会影响其加合物形成能力。基于这些结果,有必要在
NTSR1 和其他受体靶向拮抗构建物中进一步探索溶酶体内捕获方法。