Synthesis and Biological Evaluation of 1-Methyl-2-(3′,4′,5′-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors
摘要:
The 2-(3,4,5-trimethoxybenzoyl)-2-aminoindole nucleus was used as the fundamental structure for the synthesis of compounds modified with respect to positions C-4 to C-7 with different moieties (chloro, methyl, or methoxy). Additional structural variations concerned the indole nitrogen, which was alkylated with small alkyl groups such as methyl or ethyl. We have identified 1-methyl-2-(3,4,5-trimethoxybenzoyl)-3-amino-7-methoxyindole as a new highly potent anti proliferative agent that targets tubulin at the colchicine binding site and leads to apoptotic cell death.
Synthesis and Biological Evaluation of 1-Methyl-2-(3′,4′,5′-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors
摘要:
The 2-(3,4,5-trimethoxybenzoyl)-2-aminoindole nucleus was used as the fundamental structure for the synthesis of compounds modified with respect to positions C-4 to C-7 with different moieties (chloro, methyl, or methoxy). Additional structural variations concerned the indole nitrogen, which was alkylated with small alkyl groups such as methyl or ethyl. We have identified 1-methyl-2-(3,4,5-trimethoxybenzoyl)-3-amino-7-methoxyindole as a new highly potent anti proliferative agent that targets tubulin at the colchicine binding site and leads to apoptotic cell death.
3‐Aminoindole Synthesis from 2‐Nitrochalcones and Ammonia or Primary Amines
作者:Guan Zhang、Lu Lin、Kai Yang、Shihui Wang、Qiang Feng、Jun Zhu、Qiuling Song
DOI:10.1002/adsc.201900551
日期:2019.8.21
A step‐economic strategy for 3‐aminoindoles synthesis with ammonia or primaryamines as “N” source under transition‐metal‐free conditions was achieved. A series of 3‐aminoindoles was obtained with abundant “N” source featuring high efficiency, mild conditions, environmental friendliness and scalability. Efficient syntheses of the intermediates of COX‐2 inhibitor and tubulin polymerization inhibitor