摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

prostaglandin I2(1-)

中文名称
——
中文别名
——
英文名称
prostaglandin I2(1-)
英文别名
(5Z)-5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(E,3S)-3-hydroxyoct-1-enyl]-3,3a,4,5,6,6a-hexahydrocyclopenta[b]furan-2-ylidene]pentanoate
prostaglandin I2(1-)化学式
CAS
——
化学式
C20H31O5-
mdl
——
分子量
351.5
InChiKey
KAQKFAOMNZTLHT-OZUDYXHBSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.6
  • 重原子数:
    25
  • 可旋转键数:
    9
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.75
  • 拓扑面积:
    89.8
  • 氢给体数:
    2
  • 氢受体数:
    5

反应信息

  • 作为反应物:
    描述:
    NADP+prostaglandin I2(1-) 生成 15-dehydro-prostaglandin I2(1-) 、 氢(+1)阳离子NADPH(4-)
    参考文献:
    名称:
    兔肾脏中NADP +依赖性PGI2特异性15-羟基前列腺素脱氢酶的分离及性质。
    摘要:
    DOI:
    10.1016/0076-6879(82)86185-5
  • 作为产物:
    描述:
    prostaglandin H2(1-) 生成 prostaglandin I2(1-)
    参考文献:
    名称:
    Purification and Characterization of Recombinant Human Prostacyclin Synthase
    摘要:
    催化前列腺素(PG)H2 转化为前列环素(PGI2)的前列环素合成酶(PGIS)是细胞色素 P-450 (P450)超家族 CYP8A1 的成员。为了研究人类 PGIS 的酶和蛋白质特性,我们利用杆状病毒表达系统在弗氏蹼翅虫 21(Sf21)细胞中过表达了该酶。用磷酸钙凝胶吸收法从溶解的微粒体部分分离出全酶,再用DEAE-Sepharose和羟基磷灰石柱层析法纯化至均一。24°C 时,纯化的人 PGIS 对 PGH2 的 Km 值和 Vmax 值分别为 30 µM 和 15 µmol/min/mg 蛋白。该酶的光学吸收和 EPR 光谱显示了 P450 氧化态低自旋形式的特征。不过,一氧化碳还原差异光谱在 418 nm 而不是 450 nm 处显示了一个峰值。向酶中加入 PGH2 类似物 U46619 会产生氧配体类型的差异光谱,最大吸收波长为 407 纳米,最小吸收波长为 430 纳米。用另一种 PGH2 类似物 U44069 处理会在光谱中产生波长为 387 纳米的峰值和波长为 432 纳米的谷值(I 型),而用 PGIS 抑制剂氨酰丙咪嗪处理会产生波长为 434 纳米的峰值和波长为 412 纳米的谷值(II 型)。该酶的 Cys441His 突变体不具有血红素结合能力或酶活性。因此,我们成功地从受感染的昆虫细胞中获得了足量的纯化重组人 PGIS 用于光谱分析,它具有很高的特异性活性和 P450 的特征,表明了底物的特异性。
    DOI:
    10.1093/jb/mvh059
点击查看最新优质反应信息

文献信息

  • Purification and Characterization of Recombinant Human Prostacyclin Synthase
    作者:M. Wada
    DOI:10.1093/jb/mvh059
    日期:2004.4.1
    Prostacyclin synthase (PGIS), which catalyzes the conversion of prostaglandin (PG) H2 to prostacyclin (PGI2), is a member of the cytochrome P-450 (P450) superfamily, CYP8A1. To study the enzymatic and protein characteristics of human PGIS, the enzyme was overexpressed in Spodoptera frugiperda 21 (Sf21) cells using the baculovirus expression system. PGIS was expressed in the microsomes of the infected Sf21 cells after culture in 5 µg/ml hematin-supplemented medium for 72 h. The holoenzyme was isolated from the solubilized microsomal fraction by calcium phosphate gel absorption and purified to homogeneity by DEAE-Sepharose and hydroxyapatite column chromatography. The Km and Vmax values of the purified human PGIS for PGH2 were 30 µM and 15 µmol/min/mg of protein at 24°C, respectively. The optical absorption and EPR spectra of the enzyme revealed the characteristics of a low-spin form of P450 in the oxidized state. The carbon monoxide-reduced difference spectrum, however, exhibited a peak at 418 nm rather than 450 nm. The addition of a PGH2 analogue, U46619, to the enzyme produced an oxygen-ligand type of the difference spectrum with maximum absorption at 407 nm and minimum absorption at 430 nm. Treatment with another PGH2 analogue, U44069, produced a peak at 387 nm and a trough at 432 nm in the spectrum (Type I), while treatment with tranylcypromine, a PGIS inhibitor, produced a peak at 434 nm and a trough at 412 nm (Type II). A Cys441His mutant of the enzyme possessed no heme-binding ability or enzyme activity. Thus, we succeeded in obtaining a sufficient amount of the purified recombinant human PGIS from infected insect cells for spectral analyses that has high specific activity and the characteristics of a P450, indicating substrate specificity.
    催化前列腺素(PG)H2 转化为前列环素(PGI2)的前列环素合成酶(PGIS)是细胞色素 P-450 (P450)超家族 CYP8A1 的成员。为了研究人类 PGIS 的酶和蛋白质特性,我们利用杆状病毒表达系统在弗氏蹼翅虫 21(Sf21)细胞中过表达了该酶。用磷酸钙凝胶吸收法从溶解的微粒体部分分离出全酶,再用DEAE-Sepharose和羟基磷灰石柱层析法纯化至均一。24°C 时,纯化的人 PGIS 对 PGH2 的 Km 值和 Vmax 值分别为 30 µM 和 15 µmol/min/mg 蛋白。该酶的光学吸收和 EPR 光谱显示了 P450 氧化态低自旋形式的特征。不过,一氧化碳还原差异光谱在 418 nm 而不是 450 nm 处显示了一个峰值。向酶中加入 PGH2 类似物 U46619 会产生氧配体类型的差异光谱,最大吸收波长为 407 纳米,最小吸收波长为 430 纳米。用另一种 PGH2 类似物 U44069 处理会在光谱中产生波长为 387 纳米的峰值和波长为 432 纳米的谷值(I 型),而用 PGIS 抑制剂氨酰丙咪嗪处理会产生波长为 434 纳米的峰值和波长为 412 纳米的谷值(II 型)。该酶的 Cys441His 突变体不具有血红素结合能力或酶活性。因此,我们成功地从受感染的昆虫细胞中获得了足量的纯化重组人 PGIS 用于光谱分析,它具有很高的特异性活性和 P450 的特征,表明了底物的特异性。
  • Structures of Prostacyclin Synthase and Its Complexes with Substrate Analog and Inhibitor Reveal a Ligand-specific Heme Conformation Change
    作者:Yi-Ching Li、Chia-Wang Chiang、Hui-Chun Yeh、Pei-Yung Hsu、Frank G. Whitby、Lee-Ho Wang、Nei-Li Chan
    DOI:10.1074/jbc.m707470200
    日期:2008.2
    Prostacyclin synthase (PGIS) is a cytochrome P450 ( P450) enzyme that catalyzes production of prostacyclin from prostaglandin H-2. PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor ( minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H-2, leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels.
  • Prostacyclin and thromboxane synthases
    作者:Tadashi Tanabe、Volker Ullrich
    DOI:10.1016/0929-7855(95)00031-k
    日期:1995.10
  • Ham E.A.; Egan R.W.; Soderman D.D., J Biol Chem, 1979, 0021-9258, 2191-4
    作者:Ham E.A.、Egan R.W.、Soderman D.D.、Gale P.H.、Kuehl F.A. Jr.
    DOI:——
    日期:——
  • DeWitt D.L.; Smith W.L., J Biol Chem, 1983, 0021-9258, 3285-93
    作者:DeWitt D.L.、Smith W.L.
    DOI:——
    日期:——
查看更多