Synthesis of Conformationally Locked Carba-LNAs through Intramolecular Free-Radical Addition to C═N. Electrostatic and Steric Implication of the Carba-LNA Substituents in the Modified Oligos for Nuclease and Thermodynamic Stabilities
The syntheses of the hitherto unavailable parentfully unsubstituted carba-LNA and its C7'-amino and/or C6'-hydroxyl substituted derivatives, have been accomplished by the intramolecular 5-exo free-radical addition to a C4'-tethered C=N to give carba-LNAs with variable hydrophilic substituents at C6'/C7' (amino and/or hydroxyl). They have been introduced into isosequential antisense oligonucleotides (AONs) to examine how their relative electrostatic and steric effects in the minor groove of a putative AON-RNA duplex affect the target affinity, nuclease resistance, and RNase H elicitation. We show that 2'-oxygen in LNA is important in stabilizing the DNA/DNA and DNA/RNA duplexes vis-a-vis the unsubstituted carba-LNA and its other derivatives and that hydrophobic groups at C6'/C7' in both carba-LNA and carba-ENA relatively destabilize the AON/DNA duplex more profoundly than those in the AON/RNA duplexes. Two main factors affect the relative stabilities of AON/DNA versus AON/RNA duplexes: (i) hydration in the minor groove depending upon hydrophilicity vis-a-vis hydrophobicity of the substituents, and (ii) the relative size of the minor groove in the AON/DNA versus AON/RNA duplexes dictates the steric clash with the substituents depending upon their relative chiralities. We also show how the chirality and chemical nature of the C6'/C7' substituents affect the nuclease stability as well as the thermal stability and the RNase recruitment by AON/RNA duplexes.
Fine Tuning of Electrostatics around the Internucleotidic Phosphate through Incorporation of Modified 2′,4′-Carbocyclic-LNAs and -ENAs Leads to Significant Modulation of Antisense Properties
choice of the cleavage sites of RNase H mediated RNA cleavage in the AON/RNA hybrid duplex, but the cleavage rate depended on the modification site in the AON sequence. If the original preferred cleavage site by RNase H was included in the 4-5nt stretch from the 3′-end of the modification site in the AON, decreased cleavage rate was observed. Upon screening of 52 modified AONs, containing 13 differently