Synthesis of conformationally constrained γ-d-glutamyl-meso-diaminopimelic acid derivatives as ligands of nucleotide-binding oligomerization domain protein 1 (Nod1)
作者:Žiga Jakopin、Martina Gobec、Jaka Kodela、Toni Hazdovac、Irena Mlinarič-Raščan、Marija Sollner Dolenc
DOI:10.1016/j.ejmech.2013.08.022
日期:2013.11
Nod1, an important member of the pattern recognition receptor family, remains a virtually unexploited target. Harnessing its innate immune stimulatory properties still remains an unfulfilled goal of medicinal chemistry. Nucleotide-binding oligomerization domain protein 1 (Nod1) agonists have been shown to boost the inflammatory responses against pathogenic microbes and could thus constitute a new class of broad spectrum antimicrobial agents. To gain additional insight into the structure/activity relationships of Nod1 agonistic compounds, a series of novel, conformationally constrained gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP) analogs have been designed and synthesized. Ramos-Blue cells expressing Nod1 were used to screen and validate our compounds for their Nod1-agonist activity. Their immunomodulatory properties were subsequently determined in vitro, by evaluating their capacity to induce proinflammatory cytokine and chemokine production from human peripheral blood mononuclear cells (PBMC), by themselves and in synergy with lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) ligand. The synthesized iE-DAP analogs were shown to possess immuno-enhancing properties as a result of their potent and specific Nod1-agonistic effect. The activity of the compound exhibiting the greatest capacity to induce pro-inflammatory cytokine release from PBMC surpassed that of lauroyl-gamma-D-glutamyl-mesodiaminopimelic acid (C12-iE-DAP). (C) 2013 Elsevier Masson SAS. All rights reserved.