Efficient Hydrosilylation of Carbonyl Compounds with the Simple Amide Catalyst [Fe{N(SiMe3)2}2]
作者:Jian Yang、T. Don Tilley
DOI:10.1002/anie.201005055
日期:2010.12.27
Keep it simple: A variety of ketones and two aldehydes underwent efficienthydrosilylation under mild conditions in the presence of the title complex (see scheme; R,R′=H, alkyl, aryl). In some cases, a catalyst loading of just 0.01–0.03 mol % was sufficient. This catalyst may provide a simple, cost‐effective, and environmentally benign alternative to currently employed methods for the hydrosilylation
Synthesis of silyl iron hydride <i>via</i> Si–H activation and its dual catalytic application in the hydrosilylation of carbonyl compounds and dehydration of benzamides
The hydrido silyl iron complex (o-Ph2PC6H4SiMe2)Fe(PMe3)3H (2) was obtained via the activation of the Si–H bond of the bidentate silyl ligand o-Ph2P(C6H4)SiMe2H (1) by Fe(PMe3)4. 2 showed good to excellent catalytic activity in both the reduction of aldehydes/ketones and the dehydration of benzamide. In addition, with complex 2 as a catalyst, α,β-unsaturated carbonyls could be selectively reduced to
氢化硅烷基铁络合物(o -Ph 2 PC 6 H 4 SiMe 2)Fe(PMe 3)3 H(2)是通过激活双齿甲硅烷基配体o -Ph 2 P(C)的Si–H键而获得的Fe(PMe 3)4形成6 H 4)SiMe 2 H(1)。图2在醛/酮的还原和苯甲酰胺的脱水中均显示出良好至优异的催化活性。另外,带复数2作为催化剂,α,β-不饱和羰基可以选择性地还原为相应的α,β-不饱和醇。提出了2的形成机理和催化脱水过程,并进行了部分实验验证。
Ruthenium catalyzed selective hydrosilylation of aldehydes
作者:Basujit Chatterjee、Chidambaram Gunanathan
DOI:10.1039/c3cc47593j
日期:——
A chemoselective hydrosilylation method for aldehydes is developed using a ruthenium catalyst [(Ru(p-cymene)Cl2)2] and triethylsilane; a mono hydride bridged dinuclear complex [(η6-p-cymene)RuCl}2(μ-H-μ-Cl)] and a Ru(IV) mononuclear dihydride complex [(η6-p-cymene)Ru(H)2(SiEt3)2] are identified as potential intermediates in the reaction and the proposed catalytic cycle involves a 1,3-hydride migration.
The hydrosilylation reaction between silanes and various carbonyl substrates such as aldehyde, ketone, ester, and carbonate has been catalyzed by Re(CO)5Cl UV photolysis. Kinetic studies have shown that the reaction is favored for the least sterically hindered silanes with aldehydes followed by aliphatic ketones. The IR spectrum of the rhenium carbonyl dimer HRe2(CO)9(SiR3) has been recorded in the
硅烷与各种羰基底物(如醛,酮,酯和碳酸酯)之间的氢化硅烷化反应已通过Re(CO)5 Cl UV光解进行了催化。动力学研究表明,对于位阻最小的硅烷与醛,其次是脂族酮,该反应是有利的。羰基rh二聚体HRe 2(CO)9(SiR 3)的红外光谱已记录在反应混合物中。该络合物被认为是活性催化剂Re(CO)4 SiR 3的静止状态。,可以在激活后释放。已经提出了涉及该物种的催化机理,并通过计算研究显示出其在热力学上是可行的。另外,可以使用相同的机理解释各种羰基底物之间的相对氢化硅烷化速率。
Hydrosilylation of Carbonyl Compounds Catalyzed by a Nickel Complex Bearing a PBP Ligand
作者:José Antonio Fernández、Juan Manuel García、Pablo Ríos、Amor Rodríguez
DOI:10.1002/ejic.202100425
日期:2021.8.6
related pincer systems. The analysis of the reaction mechanism allows for the synthesis and characterization of a nickel alkoxide derivative by insertion of the carbonyl moiety into the Ni−H bond. Combined experimental and theoretical analysis (DFT) support a reaction mechanism that involves the initial formation of an alkoxide complex followed by reaction with the silane to release the corresponding