Core Assembly Mechanism of Quinocarcin/SF-1739: Bimodular Complex Nonribosomal Peptide Synthetases for Sequential Mannich-type Reactions
摘要:
Quinocarcin and SF-1739, potent antitumor antibiotics, share a common tetracyclic tetrahydroisoquinoline (THIQ)-pyrrolidine core scaffold. Herein, we describe the identification of their biosynthetic gene clusters and biochemical analysis of Qcn18/ Cya18 generating the previously unidentified extender unit dehydroarginine, which is a component of the pyrrolidine ring. ATP-inorganic pyrophosphate exchange experiments with five nonribosomal peptide synthetases (NRPSs) enabled us to identify their substrates. On the basis of these data, we propose that a biosynthetic pathway comprising a threecomponent NRPS/MbtH family protein complex, Qcn16/17/19, plays a key role in the construction of tetracyclic THIQ-pyrrolidine core scaffold involving sequential Pictet-Spengler and intramolecular Mannich reactions. Furthermore, data derived from gene inactivation experiments led us to propose late-modification steps of quinocarcin.
Core Assembly Mechanism of Quinocarcin/SF-1739: Bimodular Complex Nonribosomal Peptide Synthetases for Sequential Mannich-type Reactions
摘要:
Quinocarcin and SF-1739, potent antitumor antibiotics, share a common tetracyclic tetrahydroisoquinoline (THIQ)-pyrrolidine core scaffold. Herein, we describe the identification of their biosynthetic gene clusters and biochemical analysis of Qcn18/ Cya18 generating the previously unidentified extender unit dehydroarginine, which is a component of the pyrrolidine ring. ATP-inorganic pyrophosphate exchange experiments with five nonribosomal peptide synthetases (NRPSs) enabled us to identify their substrates. On the basis of these data, we propose that a biosynthetic pathway comprising a threecomponent NRPS/MbtH family protein complex, Qcn16/17/19, plays a key role in the construction of tetracyclic THIQ-pyrrolidine core scaffold involving sequential Pictet-Spengler and intramolecular Mannich reactions. Furthermore, data derived from gene inactivation experiments led us to propose late-modification steps of quinocarcin.