摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine

中文名称
——
中文别名
——
英文名称
4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine
英文别名
N-[(2R,3R,4S,5R)-3,5,6-trihydroxy-1-oxo-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexan-2-yl]acetamide
4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine化学式
CAS
——
化学式
C14H25NO11
mdl
——
分子量
383.353
InChiKey
HESSGHHCXGBPAJ-URFZRFJVSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -5
  • 重原子数:
    26
  • 可旋转键数:
    9
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    206
  • 氢给体数:
    8
  • 氢受体数:
    11

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    N-乙酰氨基葡萄糖 、 α-D-glucopyranose 1-phosphate disodium 在 Ruminococcus albus cellobiose phosphorylase Y648V mutant 作用下, 以 aq. buffer 为溶剂, 反应 5.0h, 生成 4-O-β-D-glucopyranosyl-N-acetyl-D-glucosamine
    参考文献:
    名称:
    Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis
    摘要:
    Cellobiose phosphorylase (EC 2.4.1.20, CBP) catalyzes the reversible phosphorolysis of cellobiose to alpha-D-glucose 1-phosphate (Glc1P) and D-glucose. Cys485, Tyr648, and Glu653 of CBP from Ruminococcus albus, situated at the +1 subsite, were mutated to modulate acceptor specificity. C485A, Y648F, and Y648V were active enough for analysis. Their acceptor specificities were compared with the wild type based on the apparent kinetic parameters determined in the presence of 10 mM Glc1P. C485A showed higher preference for D-glucosamine than the wild type. Apparent k(cat)/K-m values of Y648F for D-mannose and 2-deoxy-D-glucose were 8.2- and 4.0-fold higher than those of the wild type, respectively. Y648V had synthetic activity toward N-acetyl-D-glucosamine, while the other variants did not. The oligosaccharide production in the presence of the same concentrations of wild type and each mutant was compared. C485A produced 4-O-beta-D-glucopyranosyl-D-glucosamine from 10 mM Glc1P and D-glucosamine at a rate similar to the wild type. Y648F and Y648V produced 4-O-beta-D-glucopyranosyl-D-mannose and 4-O-beta-D-glucopyranosyl-N-acetyl-D-glucosamine much more rapidly than the wild type when D-mannose and N-acetyl-D-glucosamine were used as acceptors, respectively. After a 4 h reaction, the amounts of 4-O-beta-D-glucopyranosyl-D-mannose and 4-O-beta-D-glucopyranosyl-N-acetyl-D-glucosamine produced by Y648F and Y648V were 5.9- and 12-fold higher than the wild type, respectively. (C) 2013 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.carres.2013.06.010
点击查看最新优质反应信息

文献信息

  • Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis
    作者:Ken Hamura、Wataru Saburi、Hirokazu Matsui、Haruhide Mori
    DOI:10.1016/j.carres.2013.06.010
    日期:2013.9
    Cellobiose phosphorylase (EC 2.4.1.20, CBP) catalyzes the reversible phosphorolysis of cellobiose to alpha-D-glucose 1-phosphate (Glc1P) and D-glucose. Cys485, Tyr648, and Glu653 of CBP from Ruminococcus albus, situated at the +1 subsite, were mutated to modulate acceptor specificity. C485A, Y648F, and Y648V were active enough for analysis. Their acceptor specificities were compared with the wild type based on the apparent kinetic parameters determined in the presence of 10 mM Glc1P. C485A showed higher preference for D-glucosamine than the wild type. Apparent k(cat)/K-m values of Y648F for D-mannose and 2-deoxy-D-glucose were 8.2- and 4.0-fold higher than those of the wild type, respectively. Y648V had synthetic activity toward N-acetyl-D-glucosamine, while the other variants did not. The oligosaccharide production in the presence of the same concentrations of wild type and each mutant was compared. C485A produced 4-O-beta-D-glucopyranosyl-D-glucosamine from 10 mM Glc1P and D-glucosamine at a rate similar to the wild type. Y648F and Y648V produced 4-O-beta-D-glucopyranosyl-D-mannose and 4-O-beta-D-glucopyranosyl-N-acetyl-D-glucosamine much more rapidly than the wild type when D-mannose and N-acetyl-D-glucosamine were used as acceptors, respectively. After a 4 h reaction, the amounts of 4-O-beta-D-glucopyranosyl-D-mannose and 4-O-beta-D-glucopyranosyl-N-acetyl-D-glucosamine produced by Y648F and Y648V were 5.9- and 12-fold higher than the wild type, respectively. (C) 2013 Elsevier Ltd. All rights reserved.
查看更多