Dehydration Reactions in Water. Brønsted Acid−Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in Water
摘要:
Dehydration reactions in water have been realized by a surfactant-type catalyst, dodecylbenzenesulfonic acid (DBSA). These reactions include dehydrative esterification, etherification, thioetherification, and dithioacetalization. In these reactions, DBSA and substrates form emulsion droplets whose interior is hydrophobic enough to exclude water molecules generated during the reactions. Detailed studies on the esterification revealed that the yields of esters were affected by temperature, amounts of DBSA used, and the substrates. Esters were obtained in high yields for highly hydrophobic substrates. On the basis of the difference in hydrophobicity of the substrates, unique selective esterification and etherification in water were attained. Furthermore, chemospecific, three-component reactions under DBSA-catalyzed conditions were also found to proceed smoothly. This work not only may lead to environmentally benign systems but also will provide a new aspect of organic chemistry in water.
A Linear-Hyperbranched Supramolecular Amphiphile and Its Self-Assembly into Vesicles with Great Ductility
作者:Wei Tao、Yong Liu、Binbin Jiang、Songrui Yu、Wei Huang、Yongfeng Zhou、Deyue Yan
DOI:10.1021/ja207924w
日期:2012.1.18
A linear-hyperbranched supramolecularamphiphile was synthesized through the noncovalent coupling of adamantane-functionalized long alkyl chain (AD-C(n), n = 12, 18, 30) and hyperbranched polyglycerol grafted from β-cyclodextrin (CD-g-HPG) by the specific AD/CD host-guest interactions. The obtained supramolecular C(n)-b-HPGs self-assembled into unilamellar vesicles with great ductility that could be
Oil-soluble N,N-diarylammonium pyrosulfates as nonsurfactant-type catalysts for the dehydrative ester condensation under aqueous conditions are described. Preheat treatment of dibasic sulfuric acid with bulky N,N-diarylamines generates water-tolerant salts of pyrosulfuric acid as active catalyst species. The present catalysts in water can also widely be applied to unusual selective esterifications and dehydrative glycosylation.
Dehydration Reactions in Water. Brønsted Acid−Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in Water
Dehydration reactions in water have been realized by a surfactant-type catalyst, dodecylbenzenesulfonic acid (DBSA). These reactions include dehydrative esterification, etherification, thioetherification, and dithioacetalization. In these reactions, DBSA and substrates form emulsion droplets whose interior is hydrophobic enough to exclude water molecules generated during the reactions. Detailed studies on the esterification revealed that the yields of esters were affected by temperature, amounts of DBSA used, and the substrates. Esters were obtained in high yields for highly hydrophobic substrates. On the basis of the difference in hydrophobicity of the substrates, unique selective esterification and etherification in water were attained. Furthermore, chemospecific, three-component reactions under DBSA-catalyzed conditions were also found to proceed smoothly. This work not only may lead to environmentally benign systems but also will provide a new aspect of organic chemistry in water.