摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Ac-Nle-c(Asp-His-D-Phe-Arg-D-Trp-Lys)-NH2

中文名称
——
中文别名
——
英文名称
Ac-Nle-c(Asp-His-D-Phe-Arg-D-Trp-Lys)-NH2
英文别名
Ac-Nle-Asp(1)-His-D-Phe-Arg-D-Trp-Lys(1)-NH2;(3R,6S,9R,12S,15S,23S)-15-[[(2S)-2-acetamidohexanoyl]amino]-9-benzyl-6-[3-(diaminomethylideneamino)propyl]-12-(1H-imidazol-5-ylmethyl)-3-(1H-indol-3-ylmethyl)-2,5,8,11,14,17-hexaoxo-1,4,7,10,13,18-hexazacyclotricosane-23-carboxamide
Ac-Nle-c(Asp-His-D-Phe-Arg-D-Trp-Lys)-NH2化学式
CAS
——
化学式
C50H69N15O9
mdl
——
分子量
1024.19
InChiKey
JDKLPDJLXHXHNV-YMNRMMOFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0
  • 重原子数:
    74
  • 可旋转键数:
    17
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.46
  • 拓扑面积:
    385
  • 氢给体数:
    13
  • 氢受体数:
    11

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    β-Methylation of the Phe7 and Trp9 Melanotropin Side Chain Pharmacophores Affects Ligand−Receptor Interactions and Prolonged Biological Activity
    摘要:
    Topographically modified melanotropin side chain pharmacophore residues Phe(7) and Trp(9) in a cyclic peptide template (Ac-Nle(4)-c[Asp-His-Xaa(7)-Arg-Yaa(9)-Lys]-NH2) and Phe(7) in a linear peptide template (Ac-Ser-Tyr-Ser-Nle(4)-Glu-His-Xaa(7)-Arg-Trp-Gly-Lys-Pro-Val-NH2) result in differences in potency and prolonged biological activity in the frog and lizard skin bioassays. These topographic modifications included the four isomers of beta-methylphenylalanine (beta-MePhe)(7) and beta-methyltryptophan (beta-MeTrp)(9) and the two isomers of 1,2,3,4-tetrahydro-beta-carboline (Tea)(9) Modifications in the cyclic template resulted in up to a 1000-fold difference in potency for the beta-MePhe(7) stereoisomeric peptides; up to a 476-fold difference in potency resulted for the beta-MeTrp(9) peptides, and about a 50-fold difference between the Tca(9)-containing peptides. Up to a 40-fold difference in potency resulted for the beta-MePhe(7)? stereoisomeric peptides using the linear template in these assays. The relative potency racing for modifications in the cyclic template of beta-MePhe(7) were 2R,3S > 2S,3S = 2S,3R 2 > 2R,3R in the frog assay and 2S,3R > 2R,3S > 2S,3S > 2R,3R in the lizard assay. The relative potencies for modifications in the cyclic template of beta-MeTrp(9) were 2R,3S > 2R,3R > 2S,3R > 2S,3R in the frog assay and 2S,3S = 2R,3R > 2R,3S > 2S,3R in the lizard assay. The relative potencies for modifications in the cyclic template of Tca(9) were DTca > LTca in both assays, Significant differences in prolonged (residual) activities were also observed for these modified peptides and were dependent upon stereochemistry of the beta-methyl amino acid, peptide template, and bioassay system. Furthermore, comparisons of beta-MeTrp(9) stereoisomeric peptides on the frog, lizard, and human MC1 receptors suggest that structure-activity relationships on both the classical frog and lizard skin bioassays do not necessarily predict corresponding SAR profiles for the human melanocortin receptors, indicating a remarkable species specificity of the MC1 receptor requirements.
    DOI:
    10.1021/jm970018t
点击查看最新优质反应信息

文献信息

  • Topographical modification of melanotropin peptide analogs with .beta.-methyltryptophan isomers at position 9 leads to differential potencies and prolonged biological activities
    作者:Carrie Haskell-Luevano、Lakmal W. Boteju、Hiroto Miwa、Chris Dickinson、Ira Gantz、Tadataka Yamada、Mac E. Hadley、Victor J. Hruby
    DOI:10.1021/jm00023a012
    日期:1995.11
    We have introduced topographical constraints at the 9 position of a superpotent cyclic alpha-melanotropin analogue, Ac-Nle(4)-Asp(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys(10)-NH2, by incorporating a methyl group at the beta-carbon of Trp(9). These studies were performed on the Trp side chain pharmacophore to identify the bioactive topography of the indole moiety with melanocortin MC1 receptors. The four beta-MeTrp(9) isomers, in addition to the stereochemical controls L- and DTrp(9), were used to probe differential receptor molecular recognition of the tryptophan moiety in two bioassay systems. Approximately a 460-fold difference in potency was observed between the diastereoisomeric peptides in the frog skin bioassay, with only 33- and 10-fold efficacy differences observed in binding and intracellular cAMP accumulation, respectively, on the human melanocortin receptor, hMC1R. The relative orders of potencies in the frog skin bioassay were 2R,3S > 2S,3S = 2R,3R >> 2S,3R and for the hMC1R were 2S,3S > 2R,3R > 2R,3S >> 2S,3R. Of particular interest is the ability of these topographically constrained ligands to differentially affect prolonged biological activity. The 2R,3R diastereoisomeric peptide possessed superprolonged activity, whereas the 2S,3S peptide lacked any residual activity in the frog skin bioassay. However, on the melanocortin receptor, the 2S,3S diastereoisomeric peptide maintained slow dissociation rates (t(1/2) = 7 h), while the other diastereoisomeric peptides possessed dissociation t(1/2) rates of ca. 2 h. These data strongly implicate ligand-receptor interactions and kinetics as contributing to the observed prolonged biological activities and clearly illustrate topographical recognition differences between these two peripheral MC1 receptors involved in skin pigmentation. This study also demonstrates that topographical modifications of pharmacophore side chain residues, in addition to identifying preferential side chain orientation, can be a useful strategy for the design of peptides to increase the duration of biological activity, relative to the native ligand.
  • β-Methylation of the Phe<sup>7</sup> and Trp<sup>9</sup> Melanotropin Side Chain Pharmacophores Affects Ligand−Receptor Interactions and Prolonged Biological Activity
    作者:Carrie Haskell-Luevano、Kate Toth、Lakmal Boteju、Constatin Job、Ana Maria de L. Castrucci、Mac E. Hadley、Victor J. Hruby
    DOI:10.1021/jm970018t
    日期:1997.8.1
    Topographically modified melanotropin side chain pharmacophore residues Phe(7) and Trp(9) in a cyclic peptide template (Ac-Nle(4)-c[Asp-His-Xaa(7)-Arg-Yaa(9)-Lys]-NH2) and Phe(7) in a linear peptide template (Ac-Ser-Tyr-Ser-Nle(4)-Glu-His-Xaa(7)-Arg-Trp-Gly-Lys-Pro-Val-NH2) result in differences in potency and prolonged biological activity in the frog and lizard skin bioassays. These topographic modifications included the four isomers of beta-methylphenylalanine (beta-MePhe)(7) and beta-methyltryptophan (beta-MeTrp)(9) and the two isomers of 1,2,3,4-tetrahydro-beta-carboline (Tea)(9) Modifications in the cyclic template resulted in up to a 1000-fold difference in potency for the beta-MePhe(7) stereoisomeric peptides; up to a 476-fold difference in potency resulted for the beta-MeTrp(9) peptides, and about a 50-fold difference between the Tca(9)-containing peptides. Up to a 40-fold difference in potency resulted for the beta-MePhe(7)? stereoisomeric peptides using the linear template in these assays. The relative potency racing for modifications in the cyclic template of beta-MePhe(7) were 2R,3S > 2S,3S = 2S,3R 2 > 2R,3R in the frog assay and 2S,3R > 2R,3S > 2S,3S > 2R,3R in the lizard assay. The relative potencies for modifications in the cyclic template of beta-MeTrp(9) were 2R,3S > 2R,3R > 2S,3R > 2S,3R in the frog assay and 2S,3S = 2R,3R > 2R,3S > 2S,3R in the lizard assay. The relative potencies for modifications in the cyclic template of Tca(9) were DTca > LTca in both assays, Significant differences in prolonged (residual) activities were also observed for these modified peptides and were dependent upon stereochemistry of the beta-methyl amino acid, peptide template, and bioassay system. Furthermore, comparisons of beta-MeTrp(9) stereoisomeric peptides on the frog, lizard, and human MC1 receptors suggest that structure-activity relationships on both the classical frog and lizard skin bioassays do not necessarily predict corresponding SAR profiles for the human melanocortin receptors, indicating a remarkable species specificity of the MC1 receptor requirements.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物