摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(5-氨基-1-甲基-1,2,4-三唑-3-基)甲醇 | 90359-00-5

中文名称
(5-氨基-1-甲基-1,2,4-三唑-3-基)甲醇
中文别名
——
英文名称
5-Amino-1-methyl-1H-1,2,4-triazole-3-methanol
英文别名
(5-amino-1-methyl-1,2,4-triazol-3-yl)methanol
(5-氨基-1-甲基-1,2,4-三唑-3-基)甲醇化学式
CAS
90359-00-5
化学式
C4H8N4O
mdl
——
分子量
128.134
InChiKey
NQDFUNABLVGWTB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    385.5±44.0 °C(Predicted)
  • 密度:
    1.57±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -1.2
  • 重原子数:
    9
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    77
  • 氢给体数:
    2
  • 氢受体数:
    4

SDS

SDS:23ab99d9be66fcd31bd14239a58fed17
查看

反应信息

  • 作为产物:
    描述:
    拉伏替丁 在 hepatocytes 作用下, 以 甲醇 为溶剂, 反应 3.0h, 生成 (5-氨基-1-甲基-1,2,4-三唑-3-基)甲醇
    参考文献:
    名称:
    Utility of hepatocytes to model species differences in the metabolism of loxtidine and to predict pharmacokinetic parameters in rat, dog and man
    摘要:
    1. The metabolism of loxtidine (1-methyl-5-[3-[3-[(1-piperidinyl) methyl] phenoxy] propyl] amino-1H-1,2,4-triazole-3-methanol) was studied in freshly isolated rat, dog and human hepatocytes. Metabolism in vitro was comparable with previously available in vivo data in all three species with the marked species differences observed in vivo being reproduced in the hepatocyte model.2. The major route for the metabolism of loxtidine by rat hepatocytes was N-dealkylation to form the propionic acid and hydroxymethyl triazole metabolites. A minor metabolic route was the oxidation of loxtidine to a carboxylic acid metabolite. The major route of metabolism for loxtidine in dog hepatocytes was glucuronidation with oxidation to the carboxylic acid metabolite being of minor importance. Incubation of loxtidine with human hepatocytes resulted in the drug remaining largely unchanged but with the carboxylic acid metabolite being produced in minor amounts.3. In vitro studies were undertaken with rat, dog and human hepatocytes to determine the Michaelis-Menten parameters V-max and K-m for the sum of all the metabolic pathways. These kinetic parameters were used to calculate the intrinsic clearance of loxtidine. Using appropriate scaling factors, the predicted in vivo hepatic clearance was then calculated. The predicted intrinsic clearances were 51.4+/-12.4, 8.0+/-0.8 and 1.0+/-0.6 ml/min/kg for rat, dog and human hepatocytes respectively. These data were then used to calculate hepatic clearances of 24.5, 3.1 and 0.2 ml/min/kg for rat, dog and man respectively.4. In vivo hepatic and intrinsic clearances for loxtidine were determined in rat, dog and human volunteers. The hepatic clearances of loxtidine were 26.6, 6.6 and 0.4 ml/min/kg in rat, dog and man respectively and intrinsic clearances were 58.5, 18.5 and 2.0 ml/min/kg in rat, dog and man respectively.5. The present studies demonstrate that the hepatocyte model map be a valuable in vitro tool for predicting both qualitative and quantitative aspects of the metabolism of a drug in animals and man at an early stage of the drug development process.
    DOI:
    10.1080/004982599238650
点击查看最新优质反应信息

文献信息

  • Utility of hepatocytes to model species differences in the metabolism of loxtidine and to predict pharmacokinetic parameters in rat, dog and man
    作者:M. K. BAYLISS
    DOI:10.1080/004982599238650
    日期:1999.1
    1. The metabolism of loxtidine (1-methyl-5-[3-[3-[(1-piperidinyl) methyl] phenoxy] propyl] amino-1H-1,2,4-triazole-3-methanol) was studied in freshly isolated rat, dog and human hepatocytes. Metabolism in vitro was comparable with previously available in vivo data in all three species with the marked species differences observed in vivo being reproduced in the hepatocyte model.2. The major route for the metabolism of loxtidine by rat hepatocytes was N-dealkylation to form the propionic acid and hydroxymethyl triazole metabolites. A minor metabolic route was the oxidation of loxtidine to a carboxylic acid metabolite. The major route of metabolism for loxtidine in dog hepatocytes was glucuronidation with oxidation to the carboxylic acid metabolite being of minor importance. Incubation of loxtidine with human hepatocytes resulted in the drug remaining largely unchanged but with the carboxylic acid metabolite being produced in minor amounts.3. In vitro studies were undertaken with rat, dog and human hepatocytes to determine the Michaelis-Menten parameters V-max and K-m for the sum of all the metabolic pathways. These kinetic parameters were used to calculate the intrinsic clearance of loxtidine. Using appropriate scaling factors, the predicted in vivo hepatic clearance was then calculated. The predicted intrinsic clearances were 51.4+/-12.4, 8.0+/-0.8 and 1.0+/-0.6 ml/min/kg for rat, dog and human hepatocytes respectively. These data were then used to calculate hepatic clearances of 24.5, 3.1 and 0.2 ml/min/kg for rat, dog and man respectively.4. In vivo hepatic and intrinsic clearances for loxtidine were determined in rat, dog and human volunteers. The hepatic clearances of loxtidine were 26.6, 6.6 and 0.4 ml/min/kg in rat, dog and man respectively and intrinsic clearances were 58.5, 18.5 and 2.0 ml/min/kg in rat, dog and man respectively.5. The present studies demonstrate that the hepatocyte model map be a valuable in vitro tool for predicting both qualitative and quantitative aspects of the metabolism of a drug in animals and man at an early stage of the drug development process.
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺